IDEAS home Printed from https://ideas.repec.org/p/ags/ubzefd/207697.html
   My bibliography  Save this paper

Energy security, uncertainty, and energy resource use option in Ethiopia: A sector modelling approach

Author

Listed:
  • Guta, Dawit Diriba
  • Börner, Jan

Abstract

Ethiopia’s energy sector faces critical challenges to meeting steadily increasing demand given limited infrastructure, heavy reliance on hydroelectric power, and underdevelopment of alternative energy resources. The main aim of this paper is to investigate an optimal least cost investment decisions for integrated energy source diversification. We seek to contribute to the relevant literature by paying particular attention to the role of public policy for promoting renewable energy investment and to better understand future energy security implication of various uncertainties. Dynamic linear programming model created using General Algebraic Modelling Systems (GAMS) software was used to explore the national energy security implications of uncertainties associated with technological and efficiency innovations, and climate change or drought scenarios. To cope with the impacts of drought on hydroelectric power production Ethiopia would need to invest in the development of alternative energy resources. This would improve sustainability and reliability, but these changes would also increase production costs. But greater technical and efficiency innovations found to improve electricity diversification, reduce production costs and shadow prices or resources scarcity; and are, thus, key for reducing the risks posed by drought and for enhancing energy security.

Suggested Citation

  • Guta, Dawit Diriba & Börner, Jan, 2015. "Energy security, uncertainty, and energy resource use option in Ethiopia: A sector modelling approach," Discussion Papers 207697, University of Bonn, Center for Development Research (ZEF).
  • Handle: RePEc:ags:ubzefd:207697
    DOI: 10.22004/ag.econ.207697
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/207697/files/ZEFDP201.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.207697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    2. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    3. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    4. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    5. Deichmann, Uwe & Meisner, Craig & Murray, Siobhan & Wheeler, David, 2011. "The economics of renewable energy expansion in rural Sub-Saharan Africa," Energy Policy, Elsevier, vol. 39(1), pages 215-227, January.
    6. Thiam, Djiby-Racine, 2010. "Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal," Renewable Energy, Elsevier, vol. 35(8), pages 1615-1623.
    7. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    8. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    9. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    10. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    11. Chang, Youngho & Hin Tay, Tuan, 2006. "Efficiency and deregulation of the electricity market in Singapore," Energy Policy, Elsevier, vol. 34(16), pages 2498-2508, November.
    12. Winkler, Harald & Hughes, Alison & Haw, Mary, 2009. "Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios," Energy Policy, Elsevier, vol. 37(11), pages 4987-4996, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proskuryakova, Liliana N. & Ermolenko, Georgy V., 2019. "The future of Russia’s renewable energy sector: Trends, scenarios and policies," Renewable Energy, Elsevier, vol. 143(C), pages 1670-1686.
    2. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    2. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    3. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    4. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    6. Vittorio Sessa & Ramchandra Bhandari & Abdramane Ba, 2021. "Rural Electrification Pathways: An Implementation of LEAP and GIS Tools in Mali," Energies, MDPI, vol. 14(11), pages 1-19, June.
    7. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    8. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    9. Gabriela, PICIU, 2017. "Sustainability Renewable Energy Production," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 2(1), pages 5-12.
    10. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    11. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2016. "Probabilistic life-cycle cost analysis for renewable and non-renewable power plants," Energy, Elsevier, vol. 112(C), pages 774-787.
    12. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    13. Djanibekov, Utkur & Finger, Robert & Guta, Dawit Diriba & Varun, Gaur & Mirzabaev, Alisher, 2016. "A generic model for analyzing nexus issues of households’ bioenergy use," Discussion Papers 230416, University of Bonn, Center for Development Research (ZEF).
    14. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Burkhardt, Jesse & Wiser, Ryan & Darghouth, Naïm & Dong, C.G. & Huneycutt, Joshua, 2015. "Exploring the impact of permitting and local regulatory processes on residential solar prices in the United States," Energy Policy, Elsevier, vol. 78(C), pages 102-112.
    16. Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
    17. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    18. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    20. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.

    More about this item

    Keywords

    Demand and Price Analysis; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubzefd:207697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.