IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v39y2016i3-4p157-180.html
   My bibliography  Save this article

Flexible solar photovoltaic deployments for Singapore: an economic assessment

Author

Listed:
  • Anton Finenko
  • Kamal Soundararajan

Abstract

This article presents an economic and technical analysis of the feasibility of various solar photovoltaic (PV) deployments in Singapore. In this study, the Levelised Costs of Electricity (LCOE) methodology is used to evaluate the cost of electricity for various solar PV systems that include Rooftop PV, Building Integrated PV, Floating PV and Offshore Islets PV deployments. Using actual company data on system and operating costs and reasonable estimates for irradiation and other key parameters, we find that the cost of electricity for rooftop PV deployments is on par with the current residential electricity tariff rate in Singapore. In addition, through projections of LCOE carried out for various PV deployments, we find that while all PV deployments are generally becoming more cost-competitive to match current technologies - such as combined cycle gas turbines (CCGT) - floating and offshore deployments of PV systems also have the potential to become competitive to CCGT by 2025.

Suggested Citation

  • Anton Finenko & Kamal Soundararajan, 2016. "Flexible solar photovoltaic deployments for Singapore: an economic assessment," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(3/4), pages 157-180.
  • Handle: RePEc:ids:ijgeni:v:39:y:2016:i:3/4:p:157-180
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=76352
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    2. Yang, Chi-Jen, 2010. "Reconsidering solar grid parity," Energy Policy, Elsevier, vol. 38(7), pages 3270-3273, July.
    3. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    4. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    5. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    6. Bobinaite, Viktorija & Tarvydas, Dalius, 2014. "Financing instruments and channels for the increasing production and consumption of renewable energy: Lithuanian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 259-276.
    7. Lund, P.D., 2011. "Boosting new renewable technologies towards grid parity – Economic and policy aspects," Renewable Energy, Elsevier, vol. 36(11), pages 2776-2784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    2. Tao, Jacqueline Yujia & Finenko, Anton, 2016. "Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS," Energy Policy, Elsevier, vol. 98(C), pages 749-758.
    3. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    4. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    5. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    6. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    7. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    8. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    9. Dobrotkova, Zuzana & Surana, Kavita & Audinet, Pierre, 2018. "The price of solar energy: Comparing competitive auctions for utility-scale solar PV in developing countries," Energy Policy, Elsevier, vol. 118(C), pages 133-148.
    10. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    11. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    12. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    13. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    14. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    15. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    16. B. T. Wittbrodt & J.M. Pearce, 2015. "Total U.S. cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking," Post-Print hal-02119670, HAL.
    17. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    18. Tae Yong Jung & Donghun Kim & Jongwoo Moon & SeoKyung Lim, 2018. "A Scenario Analysis of Solar Photovoltaic Grid Parity in the Maldives: The Case of Malahini Resort," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    19. Munoz, L.A. Hurtado & Huijben, J.C.C.M. & Verhees, B. & Verbong, G.P.J., 2014. "The power of grid parity: A discursive approach," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 179-190.
    20. Vimpari, Jussi & Junnila, Seppo, 2017. "Evaluating decentralized energy investments: Spatial value of on-site PV electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1217-1222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:39:y:2016:i:3/4:p:157-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.