IDEAS home Printed from https://ideas.repec.org/p/ags/saea18/266445.html
   My bibliography  Save this paper

Factors influencing the adoption of irrigation measurement tools in the Arkansas Delta

Author

Listed:
  • Rosene, Robert
  • Kovacs, Kent F.

Abstract

We address factors which may influence the adoption of flow meters and/or certain irrigation scheduling practices. Measuring irrigation flow enhances management of irrigation, which improve profits. It also serves as a useful tool in evaluating which conservation measures for irrigation to adopt. This enhanced management can come in the form of scheduling. While less sophisticated versions of it exist, newer, more scientific forms can lead to better efficiency of irrigation events. As groundwater supplies become more limited, the use of flow meters and/or efficient scheduling techniques will allow farmers to better manage water resources.

Suggested Citation

  • Rosene, Robert & Kovacs, Kent F., 2018. "Factors influencing the adoption of irrigation measurement tools in the Arkansas Delta," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266445, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea18:266445
    DOI: 10.22004/ag.econ.266445
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/266445/files/Rosene_Kovacs_SAEA_2018.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/266445/files/Rosene_Kovacs_SAEA_2018.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.266445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    2. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    3. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    4. repec:bla:canjag:v:58:y:2010:i:s1:p:433-461 is not listed on IDEAS
    5. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    6. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    7. Karina Schoengold & David L. Sunding, 2014. "The impact of water price uncertainty on the adoption of precision irrigation systems," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 729-743, November.
    8. Schaible, Glenn D. & Aillery, Marcel P., 2012. "Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands," Economic Information Bulletin 134692, United States Department of Agriculture, Economic Research Service.
    9. Glenn D. Schaible & C. S. Kim & Marcel P. Aillery, 2010. "Dynamic Adjustment of Irrigation Technology/Water Management in Western U.S. Agriculture: Toward a Sustainable Future," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 433-461, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    2. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    3. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    4. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    5. Gabriel A. Sampaio Morais & Felipe F. Silva & Carlos Otávio de Freitas & Marcelo José Braga, 2021. "Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    6. Bahta, Y. & Owusu-Sekyeer, E., 2018. "Nexus between homestead food garden programme and land ownership in South Africa: Implication on the income of vegetable farmers," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277732, International Association of Agricultural Economists.
    7. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    8. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    9. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    10. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    11. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    12. Pokhrel, Bijay & Krishna, Paudel & Eduardo, Segarra, 2016. "Factors Affecting the Choice, Intensity, and Allocation of Irrigation Technologies by U.S. Cotton Farmers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230199, Southern Agricultural Economics Association.
    13. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    14. Galioto, F., 2018. "The value of information for the management of water resources in agriculture: comparing the economic impact of alternative sources of information to schedule irrigation," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277384, International Association of Agricultural Economists.
    15. Pronti, Andrea & Auci, Sabrina & Berbel, Julio, 2024. "Water conservation and saving technologies for irrigation. A structured literature review of econometric studies on the determinants of adoption," Agricultural Water Management, Elsevier, vol. 299(C).
    16. repec:bla:afrdev:v:29:y:2017:i:s2:p:109-120 is not listed on IDEAS
    17. Lichtenberg, Erik & Majsztrik, John & Saavoss, Monica, 2014. "Willingness to Pay for Sensor-Controlled Irrigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168211, Agricultural and Applied Economics Association.
    18. Bahta Yonas Tesfamariam & Enoch Owusu-Sekyere & Donkor Emmanuel & Tlalang Boipelo Elizabeth, 2018. "The impact of the homestead food garden programme on food security in South Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 95-110, February.
    19. Phoebe Koundouri & Georgios I. Papayiannis & Athanasios Yannacopoulos, 2022. "Optimal Control Approaches to Sustainability under Uncertainty," DEOS Working Papers 2215, Athens University of Economics and Business.
    20. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    21. Oyakhilomen Oyinbo & Jordan Chamberlin & Tahirou Abdoulaye & Miet Maertens, 2022. "Digital extension, price risk, and farm performance: experimental evidence from Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 831-852, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea18:266445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.