IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332262.html
   My bibliography  Save this paper

Estimating the Economic Impacts of Climate Change on Global Food Market

Author

Listed:
  • Chen, Chi-Chung
  • Hsu, Sheng-Ming
  • Chang, Ching-Cheng
  • Hsu, Shih-Hsun

Abstract

This study investigates the impacts of climatic change on global markets of maize, rice, and wheat. The first step is to combine the Crop Yield Model estimated results and climate factors data predicted from five climate models (i.e. hadcm3, MIROC3_2_MEDRES, ECHAM5,CSIRO-MK30, and CNRM_CM3), and with the assumption that future world is in IPCC (2007) A1B scenario. Under such assumptions, we estimate the production impacts in 2030, 2040, and 2050. Moreover, using Global Trade Analysis Model (GTAP) and its data set we can further assess the economic impacts on food price, productivity, GDP, and social welfare. Simulation results show that the negative impacts of future climate change are imposing serious effects on the production of maize, rice, and wheat. Moreover, results also indicate that adverse impacts on GDP and social welfare in various countries can be seen. Among these countries, India, Mexico, and Indonesia are experiencing larger magnitude of adverse impacts on GDP in three out of five climate models. On the other hand, the most significant negative effect on social welfare is in China, India, and Mexico.

Suggested Citation

  • Chen, Chi-Chung & Hsu, Sheng-Ming & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2012. "Estimating the Economic Impacts of Climate Change on Global Food Market," Conference papers 332262, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332262
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332262/files/5756.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chi‐Chung Chen & Ching‐Cheng Chang, 2005. "The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 33(s3), pages 503-511, November.
    2. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    3. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    4. Alfons Weersink & Juan H. Cabas & Edward Olale, 2010. "Acreage Response to Weather, Yield, and Price," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(1), pages 57-72, March.
    5. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    2. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    3. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    4. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
    5. Agabriel, Jacques & Lherm, Michel & Mosnier, Claire & Reynaud, Arnaud & Thomas, Alban, 2009. "Estimating a Production Function under Production and Output Price Risks: An Application to Beef Cattle in France," TSE Working Papers 09-046, Toulouse School of Economics (TSE).
    6. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    7. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    8. Mekbib G. Haile & Tesfamicheal Wossen & Kindie Tesfaye & Joachim von Braun, 2017. "Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 55-75, June.
    9. Chiwaula, Levison & Waibel, Hermann, 2011. "Does seasonal vulnerability to poverty matter? A case study from the Hadejia-Nguru Wetlands in Nigeria," Proceedings of the German Development Economics Conference, Berlin 2011 19, Verein für Socialpolitik, Research Committee Development Economics.
    10. repec:ags:aaea22:335576 is not listed on IDEAS
    11. Gupta, Shreekant & Sen, Partha & Verma, Saumya, 2016. "Impact of Climate Change on Foodgrain Yields in India," CEI Working Paper Series 2015-9, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    12. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    13. Li, Shuang & Ker, Alan P., 2013. "An Assessment of the Canadian Federal-Provincial Crop Production Insurance Program under Future Climate Change Scenarios in Ontario," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151213, Agricultural and Applied Economics Association.
    14. Meng, Ting & Carew, Richard C. & Florkowski, Wojciech J. & Klepacka, Anna M., 2016. "Modeling Temperature and Precipitation Influences on Yield Distributions of Canola and Spring Wheat in Saskatchewan," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235251, Agricultural and Applied Economics Association.
    15. Li, Zheng & Rejesus, Roderick M. & Zheng, Xiaoyong, 2018. "Nonparametric Estimation and Inference of Production Risk with Categorical Variables," 2018 Annual Meeting, August 5-7, Washington, D.C. 274400, Agricultural and Applied Economics Association.
    16. Robert Finger & Stéphanie Schmid, 2008. "Modeling agricultural production risk and the adaptation to climate change," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 25-41, May.
    17. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    18. Ragnar Tveteras & Ola Flaten & Gudbrand Lien, 2011. "Production risk in multi-output industries: estimates from Norwegian dairy farms," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4403-4414.
    19. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    20. Attavanich, Witsanu & McCarl, Bruce A. & Fuller, Stephen W. & Vedenov, Dmitry V. & Ahmedov, Zafarbek, 2011. "The Effect of Climate Change on Transportation Flows and Inland Waterways Due to Climate-Induced Shifts in Crop Production Patterns," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 109241, Agricultural and Applied Economics Association.
    21. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.