IDEAS home Printed from https://ideas.repec.org/p/ags/ifma11/345569.html
   My bibliography  Save this paper

PR - Winter Grain Response To Phosphorus Variation On Different Soil Types Under Precision Agriculture (pa) (p347-358)

Author

Listed:
  • Hough, E.C.
  • Nell, W.T.
  • Maine, N.
  • Groenewald, J.A.

Abstract

Phosphorus (P) is an important nutrient required by every living plant and animal cell, and deficiencies in soils could cause limited crop production, thereby reducing profitability. P is also a primary nutrient essential for root development and crop production, and is needed in the tissues of a plant where cells rapidly divide and enlarge. Precision agriculture (PA) could assist the farmer in applying the ideal amount of P to a specific part of a field where it is required most. Variable rate technology (VRT) is a tool that can help with the development of strategies for fertiliser phosphate management. On-field trials were conducted on a commercial farm in the Western Cape Province; As many as five soil types occur on each field studied, and three crops – wheat, canola and barley - are grown in rotation. One half of each field was planted using VRT (PA), while constant application (SR) was used on the other half. The objective was to determine the variation of winter grain yield response to P on different soil types.

Suggested Citation

  • Hough, E.C. & Nell, W.T. & Maine, N. & Groenewald, J.A., 2011. "PR - Winter Grain Response To Phosphorus Variation On Different Soil Types Under Precision Agriculture (pa) (p347-358)," 18th Congress, Methven, New Zealand, 2011 345569, International Farm Management Association.
  • Handle: RePEc:ags:ifma11:345569
    DOI: 10.22004/ag.econ.345569
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/345569/files/11_Hough_etal_P347-358.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.345569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    2. Madhu Khanna & Onesime Faustin Epouhe & Robert Hornbaker, 1999. "Site-Specific Crop Management: Adoption Patterns and Incentives," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 21(2), pages 455-472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curtiss, Jarmila & Jelinek, Ladislav, 2012. "Cost Efficiency and Farm Self-selection in Precision Farming: The Case of Czech Wheat Production," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135784, European Association of Agricultural Economists.
    2. Hough, Ella Christina & Nell, Wilhelm T. & Maine, Ntsikane & Groenewald, Jan A. & van der Rijst, M., 2010. "Best fit model selection for spatial differences (regression) in the profitability analysis of precision phosphate (P) application to winter cereals in Precision Agriculture (PA)," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96642, African Association of Agricultural Economists (AAAE).
    3. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    4. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    5. Osei, Edward & Li, Huijun, 2016. "Value of information: costs and returns of precision corn production in Livingston County, Illinois," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236184, Agricultural and Applied Economics Association.
    6. Denise Maria Grzegozewski & Elizabeth Giron Cima & Miguel Angel Uribe-Opazo & Luciana Pagliosa Carvalho Guedes & Jerry Adriani Johann, 2020. "Spatial and Multivariate Analysis of Soybean Yield in the State of Paraná-Brazil," Journal of Agricultural Studies, Macrothink Institute, vol. 8(1), pages 387-412, March.
    7. Li Yu & Peter F. Orazem, 2014. "O-Ring production on U.S. hog farms: joint choices of farm size, technology, and compensation," Agricultural Economics, International Association of Agricultural Economists, vol. 45(4), pages 431-442, July.
    8. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    9. Shuai Qin & Hong Chen & Tuyen Thi Tran & Haokun Wang, 2022. "Analysis of the Spatial Effect of Capital Misallocation on Agricultural Output—Taking the Main Grain Producing Areas in Northeast China as an Example," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    10. Larson, James A. & English, Burton C. & Roberts, Roland K. & Cochran, Rebecca L., 2003. "Analysis Of Breakeven Yield Gains And Input Cost Savings For A Cotton Yield Monitoring System," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35081, Southern Agricultural Economics Association.
    11. Larson, James A. & Roberts, Roland K. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C. & Martin, Steven W. & Paxton, Kenneth W. & Reeves, Jeanne M., 2007. "Factors Influencing Adoption of Remotely Sensed Imagery for Site-Specific Management in Cotton Production," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34971, Southern Agricultural Economics Association.
    12. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    13. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    14. Finger, R. & Gerwig, C.N., 2008. "The Impact of Climate Change on the Profitability of Site Specific Technologies," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    15. Osei, Edward & Jafri, Syed H., 2015. "In-field Spatial Variability and Profitability of Precision Nitrogen Application On Corn in Buchanan County, Iowa," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205845, Agricultural and Applied Economics Association.
    16. Jiang, Hai & Tang, Shenfeng & Li, Lifang & Xu, Fangming & Di, Qian, 2022. "Re-examining the Contagion Channels of Global Financial Crises: Evidence from the Twelve Years since the US Subprime Crisis," Research in International Business and Finance, Elsevier, vol. 60(C).
    17. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.
    18. Kathleen P. Bell & Timothy J. Dalton, 2007. "Spatial Economic Analysis in Data‐Rich Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 487-501, September.
    19. Fan, Yubing & McCann, Laura E., 2015. "Households' Adoption of Drought Tolerant Plants: An Adaptation to Climate Change?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205544, Agricultural and Applied Economics Association.
    20. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ifma11:345569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.