IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205845.html
   My bibliography  Save this paper

In-field Spatial Variability and Profitability of Precision Nitrogen Application On Corn in Buchanan County, Iowa

Author

Listed:
  • Osei, Edward
  • Jafri, Syed H.

Abstract

Despite the intuitive appeal of precision farming, adoption of precision technology options has been well below expectations. A review of precision farming studies suggests as expected that precision farming becomes more profitable as in-field spatial variability increases. However, no studies have attempted to quantify infield variability at any reasonable scale beyond a few experimental fields. This study contributes to the assessment of precision farming by introducing an approach that can help characterize the relative profitability of precision farming methods as compared to conventional farming. Using readily available geographic information systems databases on crop cover, soil type, and weather, we assess the viability of precision nitrogen applications on corn in Buchanan County, Iowa. We find little evidence for viability of precision nitrogen applications in contrast to uniform application rates, largely because of the lack of significant in-field spatial variability in soil types.

Suggested Citation

  • Osei, Edward & Jafri, Syed H., 2015. "In-field Spatial Variability and Profitability of Precision Nitrogen Application On Corn in Buchanan County, Iowa," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205845, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205845
    DOI: 10.22004/ag.econ.205845
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205845/files/AAEAPaper_IowaPrecisionCornProfitability2c.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bullock, David S., 2013. "Simulating the Value of Information Generated by On-farm Agronomic Experimentation Using Precision Agriculture Technology," 2013: Productivity and Its Impacts on Global Trade, June 2-4, 2013. Seville, Spain 152370, International Agricultural Trade Research Consortium.
    2. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    3. Philip W. Gassman & Jimmy R. Williams & Xiuying Wang & Ali Saleh & Edward Osei & Larry M. Hauck & R. César Izaurralde & Joan D. Flowers, 2009. "Agricultural Policy Environmental EXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses, The," Center for Agricultural and Rural Development (CARD) Publications 09-tr49, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Matías L. Ruffo & Donald G. Bullock & Germán A. Bollero, 2009. "The Value of Variable Rate Technology: An Information-Theoretic Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 209-223.
    5. Bullock, David S., 2013. "Simulating the Value of Information Generated by On-farm Agronomic Experimentation Using Precision Agriculture Technology," 2013: Productivity and Its Impacts on Global Trade, June 2-4, 2013. Seville, Spain 152371, International Agricultural Trade Research Consortium.
    6. Lambert, Dayton M. & Lowenberg-DeBoer, James & Bongiovanni, Rodolfo, 2003. "Spatial Regression Models For Yield Monitor Data: A Case Study From Argentina," 2003 Annual meeting, July 27-30, Montreal, Canada 22022, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Larson, James A. & English, Burton C. & Roberts, Roland K., 2005. "The Variable-Rate Decision for Multiple Inputs with Multiple Management Zones," 2005 Annual Meeting, February 5-9, 2005, Little Rock, Arkansas 35573, Southern Agricultural Economics Association.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osei, Edward & Li, Huijun, 2016. "Value of information: costs and returns of precision corn production in Livingston County, Illinois," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236184, Agricultural and Applied Economics Association.
    2. Mkondiwa, Maxwell Gibson, 2015. "Whither Broad or Spatially Specific Fertilizer Recommendations?," Master's Theses and Plan B Papers 237344, University of Minnesota, Department of Applied Economics.
    3. Garth Holloway & Donald Lacombe & James P. LeSage, 2007. "Spatial Econometric Issues for Bio‐Economic and Land‐Use Modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 549-588, September.
    4. Velandia, Margarita M. & Rejesus, Roderick M. & Segarra, Eduardo & Bronson, Kevin, 2006. "Economics of Management Zone Delineation in Cotton Precision Agriculture," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25783, International Association of Agricultural Economists.
    5. Perrin, Richard K. & Queiroz, Pedro & Silva, Felipe & Fulginiti, Lilyan E., 2018. "Ex-ante expected payoff from variable rate N application: an expected value of sample information (EVSI) approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274351, Agricultural and Applied Economics Association.
    6. Queiroz, Pedro W. V. & Perrin, Richard K. & Fulginiti, Lilyan E. & Bullock, David S., 2023. "An Expected Value of Sample Information (EVSI) Approach for Estimating the Payoff from a Variable Rate Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(1), January.
    7. Velandia Margarita & Roderick M. Rejesus & Eduardo Segarra & Kevin Bronson, 2004. "Un análisis económico de la aproximación estadística para el establecimiento de zonas de manejo en agricultura de precisión: caso de algodón en Texas," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, September.
    8. Hough, Ella Christina & Nell, Wilhelm T. & Maine, Ntsikane & Groenewald, Jan A. & van der Rijst, M., 2010. "Best fit model selection for spatial differences (regression) in the profitability analysis of precision phosphate (P) application to winter cereals in Precision Agriculture (PA)," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96642, African Association of Agricultural Economists (AAAE).
    9. Jon T. Biermacher & B. Wade Brorsen & Francis M. Epplin & John B. Solie & William R. Raun, 2009. "The economic potential of precision nitrogen application with wheat based on plant sensing," Agricultural Economics, International Association of Agricultural Economists, vol. 40(4), pages 397-407, July.
    10. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    11. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    12. Denise Maria Grzegozewski & Elizabeth Giron Cima & Miguel Angel Uribe-Opazo & Luciana Pagliosa Carvalho Guedes & Jerry Adriani Johann, 2020. "Spatial and Multivariate Analysis of Soybean Yield in the State of Paraná-Brazil," Journal of Agricultural Studies, Macrothink Institute, vol. 8(1), pages 387-412, March.
    13. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    14. Shuai Qin & Hong Chen & Tuyen Thi Tran & Haokun Wang, 2022. "Analysis of the Spatial Effect of Capital Misallocation on Agricultural Output—Taking the Main Grain Producing Areas in Northeast China as an Example," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    15. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    16. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    17. Finger, R. & Gerwig, C.N., 2008. "The Impact of Climate Change on the Profitability of Site Specific Technologies," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    18. Papa Ousmane Cissé & Dominique Guégan & Abdou Kâ Diongue, 2018. "On parameters estimation of the Seasonal FISSAR Model," Documents de travail du Centre d'Economie de la Sorbonne 18018, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Ribaudo, Marc & Savage, Jeffrey, 2014. "Controlling non-additional credits from nutrient management in water quality trading programs through eligibility baseline stringency," Ecological Economics, Elsevier, vol. 105(C), pages 233-239.
    20. Jiang, Hai & Tang, Shenfeng & Li, Lifang & Xu, Fangming & Di, Qian, 2022. "Re-examining the Contagion Channels of Global Financial Crises: Evidence from the Twelve Years since the US Subprime Crisis," Research in International Business and Finance, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.