IDEAS home Printed from https://ideas.repec.org/p/ags/iaae18/275991.html
   My bibliography  Save this paper

The Bayesian MS-GARCH model and Value-at-Risk in South African agricultural commodity price markets

Author

Listed:
  • Shiferaw, Y.

Abstract

The core objective of this paper is to examine the relationship between the prices of agricultural commodities with the oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at- Risk (VaR). The data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH, and the Markov-switching GARCH (MS-GARCH) models. To choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under different distributions for innovations. The results indicate that the price of agricultural commodities was found to be significantly associated with the price of coal, the price of natural gas, price of oil and exchange rate. Moreover, for most of the agricultural commodities considered in this paper, the MS-GARCH models under the MCMC approach outperformed the standard single regime GARCH models in measuring VaR. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MSGARCH processes.

Suggested Citation

  • Shiferaw, Y., 2018. "The Bayesian MS-GARCH model and Value-at-Risk in South African agricultural commodity price markets," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275991, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae18:275991
    DOI: 10.22004/ag.econ.275991
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/275991/files/2283.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.275991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodrik, Dani, 1999. "Where Did All the Growth Go? External Shocks, Social Conflict, and Growth Collapses," Journal of Economic Growth, Springer, vol. 4(4), pages 385-412, December.
    2. Acemoglu, Daron & Johnson, Simon & Robinson, James & Thaicharoen, Yunyong, 2003. "Institutional causes, macroeconomic symptoms: volatility, crises and growth," Journal of Monetary Economics, Elsevier, vol. 50(1), pages 49-123, January.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    5. Tony Addison & Atanu Ghoshray & Michalis P. Stamatogiannis, 2016. "Agricultural Commodity Price Shocks and Their Effect on Growth in Sub-Saharan Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 47-61, February.
    6. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    7. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    8. Raymond, Jennie E & Rich, Robert W, 1997. "Oil and the Macroeconomy: A Markov State-Switching Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(2), pages 193-213, May.
    9. von Arnim, Rudi & Tröster, Bernhard & Staritz, Cornelia & Raza, Werner, 2015. "Commodity dependence and price volatility in least developed countries: A structuralist computable general equilibrium model with applications to Burkina Faso, Ethiopia and Mozambique," Working Papers 52, Austrian Foundation for Development Research (ÖFSE).
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Blattman, Christopher & Hwang, Jason & Williamson, Jeffrey G., 2007. "Winners and losers in the commodity lottery: The impact of terms of trade growth and volatility in the Periphery 1870-1939," Journal of Development Economics, Elsevier, vol. 82(1), pages 156-179, January.
    12. Raymond, Jennie E & Rich, Robert W, 1997. "Erratum [Oil and the Macroeconomy: A Markov State-Switching Approach]," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(4), pages 555-555, November.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    15. Antonaci, Lavinia & Demeke, Mulat & Vezzani, Antonio, 2014. "The challenges of managing agricultural price and production risks in sub-Saharan Africa," ESA Working Papers 288979, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    16. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    17. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    18. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    19. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    20. Guglielmo Maria Caporale & Nikitas Pittis & Nicola Spagnolo, 2003. "IGARCH models and structural breaks," Applied Economics Letters, Taylor & Francis Journals, vol. 10(12), pages 765-768.
    21. Marc F. Bellemare & Christopher B. Barrett & David R. Just, 2013. "The Welfare Impacts of Commodity Price Volatility: Evidence from Rural Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 877-899.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    2. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    3. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    4. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    5. Aloui, Chaker & Jammazi, Rania, 2009. "The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach," Energy Economics, Elsevier, vol. 31(5), pages 789-799, September.
    6. Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2010. "Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 331-350.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Abdellah Tahiri & Brahim Benaid & Hassane Bouzahir & Naushad Ali Mamode Khan, 2021. "Testing for the Number of Regimes in Financial Time Series GARCH Volatility," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 82-94.
    9. Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
    10. Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
    11. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Panos Pouliasis & Ioannis Kyriakou & Nikos Papapostolou, 2017. "On equity risk prediction and tail spillovers," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 379-393, October.
    13. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.
    14. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    15. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    16. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
    17. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    18. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    19. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    20. Pedro Nielsen Rotta & Pedro L. Valls Pereira, 2016. "Analysis of contagion from the dynamic conditional correlation model with Markov Regime switching," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2367-2382, May.

    More about this item

    Keywords

    Agricultural and Food Policy; International Development;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae18:275991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.