IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/212458.html
   My bibliography  Save this paper

Costs of Meeting the Cellulosic Biofuel Mandate with an Energy Crop with Establishment Cost and Yield Risk: Implications for Policy

Author

Listed:
  • Miao, Ruiqing
  • Khanna, Madhu

Abstract

We develop a framework to examine the extent to which farmers’ risk and time preferences, availability of credit to cover establishment cost, and crop insurance for conventional crops may influence farmers’ decision to allocate land to a perennial energy crop and, therefore, the total costs of meeting a cellulosic biofuel mandate using this crop. We also investigate the cost-effectiveness of two supplementary policies to the mandate: an establishment cost subsidy and subsidized energy crop insurance, which may achieve the targeted level of biomass production more cost-effectively than the mandate alone. We apply this framework to examine the total costs and land requirements of providing biomass for meeting a one-billion-gallon cellulosic biofuel mandate by using miscanthus as a feedstock while accounting for temporal and spatial variability in miscanthus yields relative to those of conventional crops at a county level across the U.S. rainfed region.

Suggested Citation

  • Miao, Ruiqing & Khanna, Madhu, 2015. "Costs of Meeting the Cellulosic Biofuel Mandate with an Energy Crop with Establishment Cost and Yield Risk: Implications for Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212458, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:212458
    DOI: 10.22004/ag.econ.212458
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/212458/files/Miao-Costs%20of%20Meeting%20the%20Cellulosic%20Biofuel%20Mandate%20with%20an%20Energy%20Crop%20with%20Establishment%20Cost%20and%20Yield.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.212458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Switchgrass as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 109776, Western Agricultural Economics Association.
    2. Babcock, Bruce A. & Choi, E. Kwan & Feinerman, Eli, 1993. "Risk And Probability Premiums For Cara Utility Functions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-8, July.
    3. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    4. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    5. Ruiqing Miao & David A. Hennessy & Hongli Feng, 2013. "Native Grassland Conversion: the Roles of Risk Intervention and Switching Costs," Center for Agricultural and Rural Development (CARD) Publications 13-wp536, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    7. Ruiqing Miao & David A. Hennessy & Bruce A. Babcock, 2012. "Investment in Cellulosic Biofuel Refineries: Do Waivable Biofuel Mandates Matter?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 750-762.
    8. David A. Hennessy & Bruce A. Babcock & Dermot J. Hayes, 1997. "Budgetary and Producer Welfare Effects of Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 1024-1034.
    9. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    10. Zhu, Ying & Ghosh, Sujit K. & Goodwin, Barry K., 2008. "Modeling Dependence in the Design of Whole Farm---A Copula-Based Model Approach," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6282, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. H. Alan Love & Steven T. Buccola, 1991. "Joint Risk Preference-Technology Estimation with a Primal System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 765-774.
    12. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    13. Erik J. O’Donoghue & Michael J. Roberts & Nigel Key, 2009. "Did the Federal Crop Insurance Reform Act Alter Farm Enterprise Diversification?," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 80-104, February.
    14. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    15. Miao, Ruiqing & Khanna, Madhu, 2014. "Are Bioenergy Crops Riskier than Corn? Implications for Biomass Price," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 29(1), pages 1-6.
    16. Brian C. Murray & Maureen L. Cropper & Francisco C. de la Chesnaye & John M. Reilly, 2014. "How Effective Are US Renewable Energy Subsidies in Cutting Greenhouse Gases?," American Economic Review, American Economic Association, vol. 104(5), pages 569-574, May.
    17. Bergtold, Jason S. & Fewell, Jason E. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Sweet Sorghum as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 108068, Agricultural and Applied Economics Association.
    18. Robert H. Beach & Yuquan W. Zhang & Bruce A. Mccarl, 2012. "Modeling Bioenergy, Land Use, And Ghg Emissions With Fasomghg: Model Overview And Analysis Of Storage Cost Implications," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-34.
    19. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    20. Eric Duquette & Nathaniel Higgins & John Horowitz, 2012. "Farmer Discount Rates: Experimental Evidence," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(2), pages 451-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Ruiqing & Khanna, Madhu, 2017. "Costs of meeting a cellulosic biofuel mandate with perennial energy crops: Implications for policy," Energy Economics, Elsevier, vol. 64(C), pages 321-334.
    2. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    3. repec:ags:aaea22:335923 is not listed on IDEAS
    4. Miao, Ruiqing & Khanna, Madhu, 2013. "Crop Insurance for Energy Grasses," 2013 AAEA: Crop Insurance and the Farm Bill Symposium 156936, Agricultural and Applied Economics Association.
    5. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    6. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    7. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    8. Mooney, Daniel F. & Barham, Bradford L. & Lian, Chang, 2013. "Sustainable Biofuels, Marginal Agricultural Lands, and Farm Supply Response: Micro-Evidence for Southwest Wisconsin," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150510, Agricultural and Applied Economics Association.
    9. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Supply with Heterogeneous Biomass Suppliers: An Application to Switchgrass-based Ethanol," Staff General Research Papers Archive 36359, Iowa State University, Department of Economics.
    10. Galik, Christopher S., 2015. "Exploring the determinants of emerging bioenergy market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 107-116.
    11. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    12. Z. Bar‐Shira & R.E. Just & D. Zilberman, 1997. "Estimation of farmers' risk attitude: an econometric approach," Agricultural Economics, International Association of Agricultural Economists, vol. 17(2-3), pages 211-222, December.
    13. Alexandre Gohin, 2019. "General Equilibrium Modelling of the Insurance Industry: U.S. Crop Insurance," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(2), pages 108-145, December.
    14. Babcock, Bruce A. & Shogren, Jason F., 1995. "The cost of agricultural production risk," Agricultural Economics, Blackwell, vol. 12(2), pages 141-150, August.
    15. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    16. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    17. Skevas, Theodoros & Swinton, Scott M. & Tanner, Sophia & Sanford, Gregg & Thelen, Kurt, 2015. "Investment risk in bioenergy crops," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205440, Agricultural and Applied Economics Association.
    18. Wang, Weiwei & Khanna, Madhu & Dwivedi, Puneet, 2013. "Optimal Mix of Feedstock for Biofuels: Implications for Land Use and GHG Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150736, Agricultural and Applied Economics Association.
    19. Mitchell, Paul D. & Knight, Thomas O., 2008. "Economic Analysis of Supplemental Deductible Coverage as Recommended in the USDA's 2007 Farm Bill Proposal," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 117-131, April.
    20. Željko Kokot & Todor Marković & Sanjin Ivanović & Maja Meseldžija, 2020. "Whole-Farm Revenue Protection as a Factor of Economic Stability in Crop Production," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    21. Teresa Serra & David Zilberman & José M. Gil, 2008. "Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 219-229, September.

    More about this item

    Keywords

    Agricultural and Food Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:212458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.