IDEAS home Printed from https://ideas.repec.org/p/ags/iaae09/51747.html
   My bibliography  Save this paper

Using multi-agent modeling technique to regionalize key processes and patterns of sustainable agricultural cropping systems in the North China Plain

Author

Listed:
  • Roth, Andreas
  • Pan, Ying
  • Yu, Zhenrong
  • Doluschitz, Reiner

Abstract

The North China Plain (NCP) covers an area of around 328,000 km2 and is one of the most important regions of cereal crop production in China. Wheat and maize rotations and one season cotton are the most common cropping systems. The region contributes at an amount of about 50% to the countries wheat production and about one third of maize yields. Crop production in the NCP was focused in the last decades on increasing yields to meet the growing food demand accompanied by the limitation of arable land as a result of urbanization rate i.e. of the Beijing District. Food production needs can nowadays only be achieved by the optimization of agricultural management, i.e. fertilizer input, irrigation, improved crop rotations. The focus on increasing yields raised serious environmental problems, like water shortage and pollution, air pollution and soil contamination. Hence the development of future land use system approaches improving these conditions is essentially. This may provide both a high production level as well as a protection of resources. The multidisciplinary collaborative International Research Training Group project (IRTG) “Modelling Material Flows and Production Systems for Sustainable Resource Use in Intensified Crop Production in the North China Plain”, funded by the Deutsche Forschungsgemeinschaft (DFG) and the Chinese Ministry of Education, was launched to detect the potential of adjustments in cropping systems and to further develop management practices for sustainable resource use and protection of environmental conditions while assuring a high yield level. The here presented research concentrates on the construction of a modelling framework of different spatial-temporal scales in order to regionalize the detected key features and the effects of changing land use patterns. In order to investigate our research objective, the regionalisation of key features towards sustainable agricultural and to improve productivity in the NCP (North China Plain) we primarily have to identify these core features. On the economic site we determine “farmer income” to be an appropriate factor. The ecological site is served by the determination of “water use efficiency” (WUE) and yield. Both factors have to be further verified on their plausibility for our research aim by project member discussion. Next an evaluation of multiple computational approaches towards their practicability was investigated. Relay on both existing GIS data in the projects AIES data base and additional data provided by our Chinese Agricultural University (CAU) colleagues. Primarily the Cellular Automata (CA) concept based on previous work as well as statistical analyses, Data mining and cell neighbourhood relations was investigated. This approach has to be denied due to insignificant neighbourhood relations and the fact that no appropriate computing environment was found. Secondly a model combination of Markov Chain and Cellular Automata as it is proposed by remote sensing software techniques (IDRISI 15.0) has been evaluated. This approach combines stochastic probabilities for cell transitions with classical GIS facilities. Again no statistic significance of spatial transitions due to farmer decisions is found. The 3rd actual approach Multi Agent System (MAS) is believed to be the most promising for several reasons. We chose NetLogo 4.0.3 as appropriate computing environment. First it includes GIS data extensions, above this it is a powerful free designable and Java programmable cross-platform user interface. The hypothesis is the following, Multi-Agents (farmers) acting in space, interfere and interact in spatial scales corrupting their entities (arable land) and thus their income. We have parameterised soil and defined agricultural activity zones. Agents now are aware of their own productivity value and compete with direct neighbours. For future purposes the ecological key features WUE and yield will be investigate by the use of the DSSAT crop model. As a group of scientist actually use the DSSAT crop model in varying plant sciences, certain expertises are generated in our project. This and the author personal expertise will help for a sudden parameterisation and integration of AEIS GIS dataset parameters.

Suggested Citation

  • Roth, Andreas & Pan, Ying & Yu, Zhenrong & Doluschitz, Reiner, 2009. "Using multi-agent modeling technique to regionalize key processes and patterns of sustainable agricultural cropping systems in the North China Plain," 2009 Conference, August 16-22, 2009, Beijing, China 51747, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae09:51747
    DOI: 10.22004/ag.econ.51747
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/51747/files/51747%20Main%20Paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.51747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heinemann, A. B. & Hoogenboom, G. & de Faria, R. T., 2002. "Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil," Agricultural Water Management, Elsevier, vol. 52(3), pages 177-196, January.
    2. Schreinemachers, Pepijn & Berger, Thomas & Aune, Jens B., 2007. "Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach," Ecological Economics, Elsevier, vol. 64(2), pages 387-401, December.
    3. McMillen, Daniel P. & McDonald, John F., 1991. "A Markov Chain model of zoning change," Journal of Urban Economics, Elsevier, vol. 30(2), pages 257-270, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    2. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    3. N. Vijayamohanan Pillai, 2004. "Causality and error correction in Markov chain: Inflation in India revisited," Centre for Development Studies, Trivendrum Working Papers 366, Centre for Development Studies, Trivendrum, India.
    4. Wenjia Zhang & Ming Zhang, 2018. "Incorporating land use and pricing policies for reducing car dependence: Analytical framework and empirical evidence," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 3012-3033, October.
    5. Hardie, Ian W. & Nickerson, Cynthia J., 2003. "The Effect Of A Forest Conservation Regulation On The Value Of Subdivisions In Maryland," Working Papers 28575, University of Maryland, Department of Agricultural and Resource Economics.
    6. S. Cho & J. Kim & R. Roberts & S. Kim, 2012. "Neighborhood spillover effects between rezoning and housing price," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(1), pages 301-319, February.
    7. Lichtenberg, Erik & Tra, Constant & Hardie, Ian, 2007. "Land use regulation and the provision of open space in suburban residential subdivisions," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 199-213, September.
    8. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    9. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    10. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    11. Shertzer, Allison & Twinam, Tate & Walsh, Randall P., 2018. "Zoning and the economic geography of cities," Journal of Urban Economics, Elsevier, vol. 105(C), pages 20-39.
    12. Rebecca Sarku & Ulfia A. Clemen & Thomas Clemen, 2023. "The Application of Artificial Intelligence Models for Food Security: A Review," Agriculture, MDPI, vol. 13(10), pages 1-28, October.
    13. Latynskiy, Evgeny & Berger, Thomas, 2012. "An Agent-Based Network Approach For Understanding, Analyzing And Supporting Rural Producer Organizations In Agriculture," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 137383, German Association of Agricultural Economists (GEWISOLA).
    14. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    15. Poussin, J.C. & Imache, A. & Beji, R. & Le Grusse, P. & Benmihoub, A., 2008. "Exploring regional irrigation water demand using typologies of farms and production units: An example from Tunisia," Agricultural Water Management, Elsevier, vol. 95(8), pages 973-983, August.
    16. Jonathan Levine & Lawrence Frank, 2007. "Transportation and land-use preferences and residents’ neighborhood choices: the sufficiency of compact development in the Atlanta region," Transportation, Springer, vol. 34(2), pages 255-274, March.
    17. Michael Iacono & David Levinson & Ahmed El-Geneidy & Rania Wasfi, 2012. "Markov Chain Model of Land Use Change in the Twin Cities," Working Papers 000107, University of Minnesota: Nexus Research Group.
    18. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    19. Berger, Thomas, 2015. "Adaptation of farm-households to increasing climate variability in Ethiopia: Bioeconomic modeling of innovation diffusion and policy interventions," 2015 Conference, August 9-14, 2015, Milan, Italy 229062, International Association of Agricultural Economists.
    20. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae09:51747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.