IDEAS home Printed from https://ideas.repec.org/p/ags/iaae09/50954.html
   My bibliography  Save this paper

The declining profitability of litchi orchards in northern Thailand: Can innovations reverse the trend?

Author

Listed:
  • Schreinemachers, Pepijn
  • Potchanasin, Chakrit
  • Berger, Thomas
  • Roygrong, Sithidech

Abstract

Litchi is an important crop in the mountainous part of northern Thailand yet its profitability has declined during the last 15 years. The replacement of litchi fruit orchards for seasonal flowers and vegetables has external costs related to increased levels of soil erosion, pesticides, and irrigation water use. Using a combination of financial analysis and agent-based modeling, the paper ex-ante assesses the impact of four technologies—artificial flower induction, small-scale cooperative fruit drying, post-harvest treatments to extend the shelf-life of fresh fruits, and greater irrigation efficiency—in terms of profits, farm incomes, litchi acreage, soil erosion, and pesticide use. The model was calibrated to one watershed in Chiang Mai province where economic development has been rapid. Although each technology substantially increases the profitability of litchi growing, scenario analysis shows that this is not enough to stem the decline in litchi orchards in the study area. To achieve this, the innovations would have to be combined with an increase in the fresh fruit price from about 9 baht/kg at present to at least 12 baht/kg. The sensitivity of the results is tested for variations in the irrigation water supply and liquidity. We report about farmers’ discussions about these results and discuss the implications for other areas in northern Thailand.

Suggested Citation

  • Schreinemachers, Pepijn & Potchanasin, Chakrit & Berger, Thomas & Roygrong, Sithidech, 2009. "The declining profitability of litchi orchards in northern Thailand: Can innovations reverse the trend?," 2009 Conference, August 16-22, 2009, Beijing, China 50954, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae09:50954
    DOI: 10.22004/ag.econ.50954
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/50954/files/512.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.50954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sunding, David & Zilberman, David, 2001. "The agricultural innovation process: Research and technology adoption in a changing agricultural sector," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 4, pages 207-261, Elsevier.
    2. Binswanger, Hans P & von Braun, Joachim, 1991. "Technological Change and Commercialization in Agriculture: The Effect on the Poor," The World Bank Research Observer, World Bank, vol. 6(1), pages 57-80, January.
    3. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    4. Schreinemachers, Pepijn & Berger, Thomas & Aune, Jens B., 2007. "Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach," Ecological Economics, Elsevier, vol. 64(2), pages 387-401, December.
    5. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    6. Willard W. Cochrane, 1985. "The Need to Rethink Agricultural Policy in General and to Perform Some Radical Surgery on Commodity Programs in Particular," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(5), pages 1002-1009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leblond, Jean-Philippe, 2019. "Revisiting forest transition explanations: The role of “push” factors and adaptation strategies in forest expansion in northern Phetchabun, Thailand," Land Use Policy, Elsevier, vol. 83(C), pages 195-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    2. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    3. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    4. Kopp, Thomas & Salecker, Jan, 2020. "How traders influence their neighbours: Modelling social evolutionary processes and peer effects in agricultural trade networks," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    5. Quang, Dang Viet & Schreinemachers, Pepijn & Berger, Thomas, 2014. "Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 123(C), pages 108-119.
    6. Grovermann, Christian & Schreinemachers, Pepijn & Riwthong, Suthathip & Berger, Thomas, 2017. "‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture," Ecological Economics, Elsevier, vol. 132(C), pages 91-103.
    7. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    8. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    9. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    10. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    11. Laura Schmitt Olabisi & Ryan Qi Wang & Arika Ligmann-Zielinska, 2015. "Why Don’t More Farmers Go Organic? Using A Stakeholder-Informed Exploratory Agent-Based Model to Represent the Dynamics of Farming Practices in the Philippines," Land, MDPI, vol. 4(4), pages 1-24, October.
    12. Latynskiy, Evgeny & Berger, Thomas, 2012. "An Agent-Based Network Approach For Understanding, Analyzing And Supporting Rural Producer Organizations In Agriculture," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 137383, German Association of Agricultural Economists (GEWISOLA).
    13. Chen, Assaf, 2017. "Spatially explicit modelling of agricultural dynamics in semi-arid environments," Ecological Modelling, Elsevier, vol. 363(C), pages 31-47.
    14. Tesfamicheal Wossen & Thomas Berger & Salvatore Di Falco, 2015. "Social capital, risk preference and adoption of improved farm land management practices in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 81-97, January.
    15. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    16. Berger, Thomas, 2015. "Adaptation of farm-households to increasing climate variability in Ethiopia: Bioeconomic modeling of innovation diffusion and policy interventions," 2015 Conference, August 9-14, 2015, Milan, Italy 229062, International Association of Agricultural Economists.
    17. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    18. Holderieath, Jason, 2016. "Spatiotemporal management under heterogeneous damage and uncertain parameters. An agent-based approach," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235850, Agricultural and Applied Economics Association.
    19. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    20. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae09:50954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.