IDEAS home Printed from https://ideas.repec.org/p/ags/gagfdp/302923.html
   My bibliography  Save this paper

Does Integrated Soil Fertility Management increase returns to land and labor? Plot-level evidence from Ethiopia

Author

Listed:
  • Hörner, Denise
  • Wollni, Meike

Abstract

Integrated Soil Fertility Management (ISFM) is widely promoted to enhance soil fertility, yields and livelihoods among smallholders, and ultimately combat environmental degradation. Its core is the combined use of organic and inorganic fertilizers with improved crop varieties. Yet, farmers face adoption barriers, such as additional monetary and labor investments. To date, much of the evidence on ISFM effects comes from experimental field trials instead of micro-level farmer data. In particular, studies on labor outcomes are scarce, but important to assess the viability of ISFM in smallholder settings. This study addresses this gap by providing a comprehensive analysis of ISFM effects on land productivity, net crop value, labor demand, labor productivity and returns to unpaid labor using survey data from over 6,000 teff, maize and wheat plots and 2,000 households in Ethiopia. We employ a multinomial endogenous switching model to account for endogeneity from observed and unobserved heterogeneity. We find that both partial and complete ISFM adoption lead to significant increases in land productivity and net crop value, in particular when improved seeds are used. In moister regions, complementing improved varieties with inorganic fertilizer seems most important, while in drier regions, enhancing it with organic fertilizer appears crucial. ISFM is related to higher labor demand, but also significantly increases labor productivity and financial returns to labor. These findings imply that ISFM can contribute to improve farmers’ livelihoods by breaking the nexus between low productivity, environmental degradation and poverty.

Suggested Citation

  • Hörner, Denise & Wollni, Meike, 2020. "Does Integrated Soil Fertility Management increase returns to land and labor? Plot-level evidence from Ethiopia," GlobalFood Discussion Papers 302923, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
  • Handle: RePEc:ags:gagfdp:302923
    DOI: 10.22004/ag.econ.302923
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/302923/files/GlobalFood_DP141.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.302923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. François Bourguignon & Martin Fournier & Marc Gurgand, 2007. "Selection Bias Corrections Based On The Multinomial Logit Model: Monte Carlo Comparisons," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 174-205, February.
    2. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    3. JunJie Wu & Bruce A. Babcock, 1998. "The Choice of Tillage, Rotation, and Soil Testing Practices: Economic and Environmental Implications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 494-511.
    4. Sheahan, Megan & Barrett, Christopher B., 2017. "Ten striking facts about agricultural input use in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 12-25.
    5. Edward B. Barbier & Jacob P. Hochard, 2018. "Land degradation and poverty," Nature Sustainability, Nature, vol. 1(11), pages 623-631, November.
    6. Menale Kassie & John Pender & Mahmud Yesuf & Gunnar Kohlin & Randy Bluffstone & Elias Mulugeta, 2008. "Estimating returns to soil conservation adoption in the northern Ethiopian highlands," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 213-232, March.
    7. Berhane, Guush & Ragasa, Catherine & Abate, Gashaw T. & Assefa, Thomas Woldu, 2018. "The state of agricultural extension services in Ethiopia and their contribution to agricultural productivity," ESSP working papers 118, International Food Policy Research Institute (IFPRI).
    8. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    9. Dillon, Brian & Barrett, Christopher B., 2017. "Agricultural factor markets in Sub-Saharan Africa: An updated view with formal tests for market failure," Food Policy, Elsevier, vol. 67(C), pages 64-77.
    10. Menale Kassie & Precious Zikhali & John Pender & Gunnar Köhlin, 2010. "The Economics of Sustainable Land Management Practices in the Ethiopian Highlands," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 605-627, September.
    11. Victor Owusu & Awudu Abdulai, 2019. "Examining the economic impacts of integrated pest management among vegetable farmers in Southern Ghana," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(11), pages 1886-1907, September.
    12. Tekalign Gutu Sakketa & Nicolas Gerber, 2020. "Rural Shadow Wages and Youth Agricultural Labor Supply in Ethiopia: Evidence from Farm Panel Data," Research in Labor Economics, in: Change at Home, in the Labor Market, and On the Job, volume 48, pages 61-105, Emerald Group Publishing Limited.
    13. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    14. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    15. Solomon Asfaw & Federica Di Battista & Leslie Lipper, 2016. "Agricultural Technology Adoption under Climate Change in the Sahel: Micro-evidence from Niger," Journal of African Economies, Centre for the Study of African Economies, vol. 25(5), pages 637-669.
    16. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    17. Gazali Issahaku & Awudu Abdulai, 2020. "Adoption of climate‐smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), pages 396-420, April.
    18. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    19. Adolwa, Ivan Solomon & Schwarze, Stefan & Buerkert, Andreas, 2019. "Impacts of integrated soil fertility management on yield and household income: The case of Tamale (Ghana) and Kakamega (Kenya)," Ecological Economics, Elsevier, vol. 161(C), pages 186-192.
    20. Marenya, Paswel Phiri & Barrett, Christopher B., 2009. "The effect of soil quality on fertilizer use rates among smallholder farmers in western Kenya," 2009 Conference, August 16-22, 2009, Beijing, China 51671, International Association of Agricultural Economists.
    21. Paswel P. Marenya & Christopher B. Barrett, 2009. "Soil quality and fertilizer use rates among smallholder farmers in western Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 561-572, September.
    22. Priscilla Wainaina & Songporne Tongruksawattana & Matin Qaim, 2018. "Synergies between Different Types of Agricultural Technologies in the Kenyan Small Farm Sector," Journal of Development Studies, Taylor & Francis Journals, vol. 54(11), pages 1974-1990, November.
    23. Place, Frank & Barrett, Christopher B. & Freeman, H. Ade & Ramisch, Joshua J. & Vanlauwe, Bernard, 2003. "Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems," Food Policy, Elsevier, vol. 28(4), pages 365-378, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makaiko G. Khonje & Christone Nyondo & Lemekezani Chilora & Julius H. Mangisoni & Jacob Ricker‐Gilbert & William J. Burke, 2022. "Exploring adoption effects of subsidies and soil fertility management in Malawi," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(3), pages 874-892, September.
    2. Gartaula, Hom N. & Gebremariam, Gebrelibanos & Jaleta, Moti, 2024. "Gender, rainfall endowment, and farmers’ heterogeneity in wheat trait preferences in Ethiopia," Food Policy, Elsevier, vol. 122(C).
    3. Ghislain B. D. Aihounton & Arne Henningsen, 2023. "Does Organic Farming Jeopardize Food and Nutrition Security?," IFRO Working Paper 2023/02, University of Copenhagen, Department of Food and Resource Economics.
    4. Hörner, Denise & Wollni, Meike, 2021. "Integrated soil fertility management and household welfare in Ethiopia," Food Policy, Elsevier, vol. 100(C).
    5. Kihara, Job & Manda, Julius & Kimaro, Anthony & Swai, Elirehema & Mutungi, Christopher & Kinyua, Michael & Okori, Patrick & Fischer, Gundula & Kizito, Fred & Bekunda, Mateete, 2022. "Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania," Agricultural Systems, Elsevier, vol. 203(C).
    6. Aihounton, Ghislain & Christiaensen, Luc, 2024. "Does agricultural intensification pay in the context of structural transformation?," Food Policy, Elsevier, vol. 122(C).
    7. Wilckyster Nyateko Nyarindo & Amin Mugera & Atakelty Hailu & Gideon Aiko Obare, 2024. "Do combined sustainable agricultural intensification practices improve smallholder farmers welfare? Evidence from eastern and western Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 296-312, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörner, Denise & Wollni, Meike, 2021. "Integrated soil fertility management and household welfare in Ethiopia," Food Policy, Elsevier, vol. 100(C).
    2. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    3. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    4. Teklewold, Hailemariam & Mekonnen, Alemu, 2017. "The Tilling of Land in a Changing Climate: Panel Data Evidence from the Nile Basin of Ethiopia," EfD Discussion Paper 17-3, Environment for Development, University of Gothenburg.
    5. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    6. Wilckyster Nyateko Nyarindo & Amin Mugera & Atakelty Hailu & Gideon Aiko Obare, 2024. "Do combined sustainable agricultural intensification practices improve smallholder farmers welfare? Evidence from eastern and western Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 296-312, March.
    7. Pan, Dan & Zhang, Ning & Kong, Fanbin, 2021. "Does it matter who gives information? The impact of information sources on farmers’ pesticide use in China," Journal of Asian Economics, Elsevier, vol. 76(C).
    8. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 367-390, April.
    9. John N. Ng’ombe & Thomson H. Kalinda & Gelson Tembo, 2017. "Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia," Agrekon, Taylor & Francis Journals, vol. 56(2), pages 205-221, April.
    10. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    11. Banchayehu Tessema Assefa & Jordan Chamberlin & Martin K. van Ittersum & Pytrik Reidsma, 2021. "Usage and Impacts of Technologies and Management Practices in Ethiopian Smallholder Maize Production," Agriculture, MDPI, vol. 11(10), pages 1-19, September.
    12. Kassie, Menale & Teklewolde, Hailemariam & Erenstein, Olaf & Jaleta, Moti & Marenya, Paswel & Mekurai, Mulugetta, 2015. "Technology diversification: Assessing impacts on crop income and agrochemical uses in Malawi," 2015 Conference, August 9-14, 2015, Milan, Italy 211838, International Association of Agricultural Economists.
    13. Denise Hörner & Adrien Bouguen & Markus Frölich & Meike Wollni, 2022. "Knowledge and Adoption of Complex Agricultural Technologies: Evidence from an Extension Experiment," The World Bank Economic Review, World Bank, vol. 36(1), pages 68-90.
    14. Mauro Vigani & Jonas Kathage, 2019. "To Risk or Not to Risk? Risk Management and Farm Productivity," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1432-1454, October.
    15. Teklewold, Hailemariam & Gebrehiwot, Tagel & Bezabih, Mintewab, 2019. "Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia," World Development, Elsevier, vol. 122(C), pages 38-53.
    16. Makaiko G. Khonje & Julius Manda & Petros Mkandawire & Adane Hirpa Tufa & Arega D. Alene, 2018. "Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 599-609, September.
    17. Yanyuan Zhang & Xintong Wu, 2023. "Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective?," Agriculture, MDPI, vol. 13(10), pages 1-16, September.
    18. Kim, Jongwoo & Mason, Nicole M. & Snapp, Sieglinde S., 2018. "Does sustainable intensification of maize production enhance child nutrition? Evidence from rural Tanzania," 2018 Annual Meeting, August 5-7, Washington, D.C. 273906, Agricultural and Applied Economics Association.
    19. Mintewab Bezabih & Finn Tarp & Hailemariam Teklewold & Alemu Mekonnen & Tagel G/Hiwot, 2023. "Traditional versus improved varieties of seed: Is there a trade-off between productivity and risk?," DERG working paper series 23-21, University of Copenhagen. Department of Economics. Development Economics Research Group (DERG).
    20. Eleni Yitbarek & Wondimagegn Tesfaye, 2022. "Climate-Smart Agriculture, Non-Farm Employment and Welfare: Exploring Impacts and Options for Scaling Up," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    More about this item

    Keywords

    Farm Management; Land Economics/Use; Productivity Analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gagfdp:302923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iagoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.