IDEAS home Printed from https://ideas.repec.org/p/ags/eaa101/9257.html
   My bibliography  Save this paper

Climate risk management based on climate modes and indices - the potential in Australian agribusinesses

Author

Listed:
  • Best, Peter
  • Stone, Roger
  • Sosenko, Olena

Abstract

Global and hemispheric climate indicators have proved useful in many countries for characterising intra- and inter-annual variability in climate processes, agricultural output and biomass production. They also form the basis of successful seasonal climate and production prediction systems for the probability distributions of allied parameters such as rainfall or crop yield. Climate risk management via derivative, insurance or bond instruments has only recently incorporated non-local climate parameters such as "teleconnection" indices in payoff functions and overall design. A feasibility study of using the Southern Oscillation Index in weather derivatives for the Australian wheat industry has suggested several such climate-anomaly indicators as suitable vehicles for managing risks of various types, including the hedging of likely errors in seasonal climate forecasting. The potential benefits should accrue if the co-joining of weather/climate risk management and seasonal forecasting is encouraged across many weather-sensitive industries (e.g. agriculture, mining, energy and tourism), if longer-term perspectives of risk across many seasons are adopted and if support is given to suitable trading mechanisms and industry extension programmes.

Suggested Citation

  • Best, Peter & Stone, Roger & Sosenko, Olena, 2007. "Climate risk management based on climate modes and indices - the potential in Australian agribusinesses," 101st Seminar, July 5-6, 2007, Berlin Germany 9257, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa101:9257
    DOI: 10.22004/ag.econ.9257
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/9257/files/sp07be02.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.9257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    2. Hélène Hamisultane, 2006. "Pricing the Weather Derivatives in the Presence of Long Memory in Temperatures," Working Papers halshs-00079197, HAL.
    3. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    4. Jewson,Stephen & Brix,Anders, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713, January.
    5. George, David A. & Birch, C. & Buckley, D. & Partridge, I.J. & Clewett, J.F., . "Assessing Climate Risk to Improve Farm Business Management," Extension Farming Systems Journal - EFS Journal, Australasian Farm Business Management Network, vol. 1(1).
    6. Chambers, Robert G. & Quiggin, John C., 2004. "Technological and financial approaches to risk management in agriculture: an integrate approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen-Huy, Thong & Deo, Ravinesh C. & An-Vo, Duc-Anh & Mushtaq, Shahbaz & Khan, Shahjahan, 2017. "Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones," Agricultural Water Management, Elsevier, vol. 191(C), pages 153-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woodard, Joshua D. & Garcia, Philip, 2008. "Weather Derivatives, Spatial Aggregation, and Systemic Risk: Implications for Reinsurance Hedging," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(1), pages 1-18, April.
    2. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    3. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    4. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    5. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    6. Markus Stowasser, 2011. "Modelling rain risk: a multi-order Markov chain model approach," Journal of Risk Finance, Emerald Group Publishing, vol. 13(1), pages 45-60, December.
    7. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    8. Joshua D. Woodard & Philip Garcia, 2008. "Basis risk and weather hedging effectiveness," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 99-117, May.
    9. Birgit Lemmerer & Stephan Unger, 2019. "Modeling and pricing of space weather derivatives," Risk Management, Palgrave Macmillan, vol. 21(4), pages 265-291, December.
    10. Heng Xiong & Rogemar Mamon, 2018. "Putting a price tag on temperature," Computational Management Science, Springer, vol. 15(2), pages 259-296, June.
    11. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    12. repec:hum:wpaper:sfb649dp2014-006 is not listed on IDEAS
    13. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    14. Boyle, Colin F.H. & Haas, Jannik & Kern, Jordan D., 2021. "Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems," Renewable Energy, Elsevier, vol. 164(C), pages 1230-1243.
    15. Xu, Wei & Odening, Martin & Musshoff, Oliver, 2007. "Indifference Pricing of Weather Insurance," 101st Seminar, July 5-6, 2007, Berlin Germany 9267, European Association of Agricultural Economists.
    16. Zhang, Li, 2008. "Three essays on agricultural risk and insurance," ISU General Staff Papers 2008010108000016857, Iowa State University, Department of Economics.
    17. Kern, Jordan D. & Characklis, Gregory W., 2017. "Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams," Energy Economics, Elsevier, vol. 61(C), pages 340-350.
    18. Mußhoff, O. & Odenin, M. & Wei, X., 2007. "Zur Quantifizierung des Basisrisikos von Wetterderivaten," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    19. Turvey, Calum G. & Chantarat, Sommarat, 2006. "Weather-Linked Bonds," 2006 Agricultural and Rural Finance Markets in Transition, October 2-3, 2006, Washington, DC 133091, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    20. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    21. Cyr, Don & Kusy, Martin, 2007. "Identification of stochastic processes for an estimated icewine temperature hedging variable," Working Papers 37298, American Association of Wine Economists.

    More about this item

    Keywords

    Agribusiness; Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa101:9257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.