IDEAS home Printed from https://ideas.repec.org/p/ags/aesc18/273490.html
   My bibliography  Save this paper

Incorporating preferences into a healthy and sustainable diet

Author

Listed:
  • Chalmers, Neil
  • Revoredo-Giha, Cesar

Abstract

Sustainable diets are defined as “nutrient-dense, affordable, culturally acceptable, and sparing of the environment” (Drewnowski, 2017). Whilst diets which cover the nutrient and environmental aspects have been studied in detail, there has been little work on also incorporating acceptability (i.e. consumer preferences). This study estimates sustainable diets using the Green et al (2015) dietary models (quadratic programming based) with the following data: national diet and nutrition survey, dietary reference values, Kantar Worldpanel prices and carbon footprints. The diet models were estimated for eight UK demographic groups alongside estimation of the respective demand systems in order to incorporate own price elasticities. The results suggest that sustainable diets for all the demographic groups are to an extent possible based on the nutrient constraints used, with the largest emission reductions (relative to the baseline diet emissions) of 45 per cent for males aged 19 to 50 and aged 50 plus.

Suggested Citation

  • Chalmers, Neil & Revoredo-Giha, Cesar, 2018. "Incorporating preferences into a healthy and sustainable diet," 92nd Annual Conference, April 16-18, 2018, Warwick University, Coventry, UK 273490, Agricultural Economics Society.
  • Handle: RePEc:ags:aesc18:273490
    DOI: 10.22004/ag.econ.273490
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273490/files/Neil_Chalmers_Draft4V4AESPaperMicroDiets.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chalmers, Neil & Revoredo-Giha, Cesar, 2017. "Designing a healthy and sustainable diet," 91st Annual Conference, April 24-26, 2017, Royal Dublin Society, Dublin, Ireland 258622, Agricultural Economics Society.
    2. Rosemary Green & James Milner & Alan Dangour & Andy Haines & Zaid Chalabi & Anil Markandya & Joseph Spadaro & Paul Wilkinson, 2015. "The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change," Climatic Change, Springer, vol. 129(1), pages 253-265, March.
    3. Cesar Revoredo-Giha & Neil Chalmers & Faical Akaichi, 2018. "Simulating the Impact of Carbon Taxes on Greenhouse Gas Emission and Nutrition in the UK," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Arthur Lewbel & Krishna Pendakur, 2009. "Tricks with Hicks: The EASI Demand System," American Economic Review, American Economic Association, vol. 99(3), pages 827-863, June.
    5. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    6. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doro, Erica & Réquillart, Vincent, 2018. "Sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," TSE Working Papers 18-913, Toulouse School of Economics (TSE).
    2. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(1), pages 117-146.
    3. Castiglione, Concetta & Mazzocchi, Mario, 2019. "Ten years of five-a-day policy in the UK: Nutritional outcomes and environmental effects," Ecological Economics, Elsevier, vol. 157(C), pages 185-194.
    4. Min, Shi & Wang, Xiaobing & Yu, Xiaohua, 2021. "Does dietary knowledge affect household food waste in the developing economy of China?," Food Policy, Elsevier, vol. 98(C).
    5. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    6. Jones, A.K. & Jones, D.L. & Cross, P., 2014. "The carbon footprint of lamb: Sources of variation and opportunities for mitigation," Agricultural Systems, Elsevier, vol. 123(C), pages 97-107.
    7. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    8. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    9. Eriksson, Mattias & Ghosh, Ranjan & Mattsson, Lisa & Ismatov, Alisher, 2017. "Take-back agreements in the perspective of food waste generation at the supplier-retailer interface," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 83-93.
    10. Tereza Pilařová & Steffen Muench & Miroslava Bavorova & Jan Huml, 2023. "Exploring the motivations behind food self-provisioning in the Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(6), pages 234-245.
    11. Jessica Aschemann-Witzel & Ilona De Hooge & Pegah Amani & Tino Bech-Larsen & Marije Oostindjer, 2015. "Consumer-Related Food Waste: Causes and Potential for Action," Sustainability, MDPI, vol. 7(6), pages 1-21, May.
    12. Allan, Grant & Comerford, David & McGregor, Peter, 2019. "The system-wide impact of healthy eating: Assessing emissions and economic impacts at the regional level," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    13. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    14. Adrian Foong & Prajal Pradhan & Oliver Frör & Jürgen P. Kropp, 2022. "Adjusting agricultural emissions for trade matters for climate change mitigation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    16. Govindasamy, Ramu & Puduri, Venkata & Kelley, Kathleen & Simon, James E., 2012. "Increased Purchases of Locally Grown Ethnic Greens and Herbs due to Concerns about Food Miles," Journal of Food Distribution Research, Food Distribution Research Society, vol. 43(3), November.
    17. Ujué Fresán & Maximino Alfredo Mejia & Winston J Craig & Karen Jaceldo-Siegl & Joan Sabaté, 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    18. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    19. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    20. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.

    More about this item

    Keywords

    Agricultural and Food Policy; Food Consumption/Nutrition/Food Safety;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc18:273490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.