IDEAS home Printed from https://ideas.repec.org/p/ags/aaea22/343940.html
   My bibliography  Save this paper

Efficacy analysis of cloud seeding policy for hail suppression in Kansas agriculture

Author

Listed:
  • Lu, Pei Jyun
  • Skidmore, Mark

Abstract

No abstract is available for this item.

Suggested Citation

  • Lu, Pei Jyun & Skidmore, Mark, 2024. "Efficacy analysis of cloud seeding policy for hail suppression in Kansas agriculture," 2024 Annual Meeting, July 28-30, New Orleans, LA 343940, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea22:343940
    DOI: 10.22004/ag.econ.343940
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/343940/files/29041.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.343940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Rogna & Günter Schamel & Alex Weissensteiner, 2023. "Modelling the switch from hail insurance to antihail nets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 118-136, January.
    2. Vasilis Sarafidis & Neville Weber, 2015. "A Partially Heterogeneous Framework for Analyzing Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 274-296, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kutlu, Levent & Sickles, Robin & Tsionas, Mike G., 2019. "Heterogeneous Decision-Making and Market Power," Working Papers 19-008, Rice University, Department of Economics.
    2. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    3. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    4. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    5. Guowei Cui & Milda NorkutÄ— & Vasilis Sarafidis & Takashi Yamagata, 2022. "Two-stage instrumental variable estimation of linear panel data models with interactive effects [Eigenvalue ratio test for the number of factors]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 340-361.
    6. Abdul-Nasah Soale & Emmanuel Selorm Tsyawo, 2023. "Clustered Covariate Regression," Papers 2302.09255, arXiv.org, revised Jul 2023.
    7. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Jaeram Lee & Jungjoon Ihm, 2022. "Heterogeneous Effects on Private Education Spending in Latent Groups in Korea," Asian Economic Journal, East Asian Economic Association, vol. 36(2), pages 159-179, June.
    9. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    10. Teemu Makkonen & Timo Mitze, 2019. "Deconstructing the Education-Innovation-Development Nexus in the EU-28 Using Panel Causality and Poolability Tests," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 516-549, June.
    11. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    12. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    13. Costantini, Mauro & Sousa, Ricardo M., 2022. "What uncertainty does to euro area sovereign bond markets: Flight to safety and flight to quality," Journal of International Money and Finance, Elsevier, vol. 122(C).
    14. Millimet, Daniel L. & Bellemare, Marc, 2023. "Fixed Effects and Causal Inference," IZA Discussion Papers 16202, Institute of Labor Economics (IZA).
    15. Daniel Czarnowske, 2022. "A Classifier-Lasso Approach for Estimating Production Functions with Latent Group Structures," Papers 2203.02220, arXiv.org.
    16. Liberati, P., 2024. "Are European health models still different?," Cambridge Working Papers in Economics 2441, Faculty of Economics, University of Cambridge.
    17. Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.
    18. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    19. Levent Kutlu & Robin C. Sickles & Mike G. Tsionas & Emmanuel Mamatzakis, 2022. "Heterogeneous decision-making and market power: an application to Eurozone banks," Empirical Economics, Springer, vol. 63(6), pages 3061-3092, December.
    20. Mitze, Timo & Naveed, Amjad & Ahmad, Nisar, 2016. "International, intersectoral, or unobservable? Measuring R&D spillovers under weak and strong cross-sectional dependence," Journal of Macroeconomics, Elsevier, vol. 50(C), pages 259-272.

    More about this item

    Keywords

    Risk And Uncertainty; Environmental Economics And Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea22:343940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.