IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/170216.html
   My bibliography  Save this paper

Inter-Decadal Climate Variability in the Edwards Aquifer: Regional Impacts of DCV on Crop Yields and Water Use

Author

Listed:
  • Ding, Jinxiu
  • McCarl, Bruce A.

Abstract

Agricultural production and water resources are sensitive to climate variability and change. Decadal climate variability (DCV) phenomena are in the early stages of being explored. This paper investigates the economic value of DCV information in the Edwards Aquifer region of Texas as well as possible adaptation to that information. To do this we first do an econometric estimate of the impacts of DCV phase combinations on crop yields in the EA region, then we alter regional model to include DCV information. We find that the average economic value of perfect DCV information forecast is $40.76 million per year. And for a less perfect forecast in terms of knowing DCV information under transition probability, the average economic value is around $1.52 million per year.

Suggested Citation

  • Ding, Jinxiu & McCarl, Bruce A., 2014. "Inter-Decadal Climate Variability in the Edwards Aquifer: Regional Impacts of DCV on Crop Yields and Water Use," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170216, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:170216
    DOI: 10.22004/ag.econ.170216
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/170216/files/AAEA2014_Jinxiu.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.170216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mu, Jianhong H. & Wein, Anne & McCarl, Bruce A., 2012. "Land Use and Management Changes: Adaptation to and Mitigation of Climate Change," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124835, Agricultural and Applied Economics Association.
    2. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjapon Prommawin & Nattanun Svavasu & Spol Tanpraphan & Voravee Saengavut & Theepakorn Jithitikulchai & Witsanu Attavanich & Bruce A. McCarl, 2024. "Impacts of climate change and agricultural diversification on agricultural production value of Thai farm households," Climatic Change, Springer, vol. 177(7), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    2. Chiwaula, Levison & Waibel, Hermann, 2011. "Does seasonal vulnerability to poverty matter? A case study from the Hadejia-Nguru Wetlands in Nigeria," Proceedings of the German Development Economics Conference, Berlin 2011 19, Verein für Socialpolitik, Research Committee Development Economics.
    3. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    4. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    5. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    6. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    7. Christian Hott & Judith Regner, 2023. "Weather extremes, agriculture and the value of weather index insurance," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 48(2), pages 230-259, September.
    8. Nasir Munir & Adiqa Kiani & Asia Baig, 2016. "Climate Change and Food Security in Pakistan: A Time Series Analysis," Global Economics Review, Humanity Only, vol. 1(1), pages 47-55, December.
    9. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    10. Attavanich, Witsanu & McCarl, Bruce A. & Fuller, Stephen W. & Vedenov, Dmitry V. & Ahmedov, Zafarbek, 2011. "The Effect of Climate Change on Transportation Flows and Inland Waterways Due to Climate-Induced Shifts in Crop Production Patterns," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 109241, Agricultural and Applied Economics Association.
    11. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    12. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    13. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    14. Shuai Chen & Xiaoguang Chen & Jintao Xu, 2016. "Assessing the impacts of temperature variations on rice yield in China," Climatic Change, Springer, vol. 138(1), pages 191-205, September.
    15. Benjamin, Catherine & Gallic, Ewen, 2018. "Does climate change influence demand ? Indian household behavior with imperfect labor markets," 2018 Annual Meeting, August 5-7, Washington, D.C. 274185, Agricultural and Applied Economics Association.
    16. Lateef Olawale Akanni, 2020. "Climatic Variations and Spatial Price Differentials of Perishable Foods in Nigeria," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 5(1), pages 1-15, June.
    17. Tsegaye Ginbo, 2022. "Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    18. Boussios, David & Barkley, Andrew, 2014. "Producer Expectations and the Extensive Margin in Grain Supply Response," Agricultural and Resource Economics Review, Cambridge University Press, vol. 43(3), pages 335-356, December.
    19. Fabio Gaetano Santeramo & Dragan Miljkovic & Emilia Lamonaca, 2021. "Agri-food trade and climate change," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(1), pages 1-18.
    20. Ines Kapphan & Pierluigi Calanca & Annelie Holzkaemper, 2012. "Climate Change, Weather Insurance Design and Hedging Effectiveness," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(2), pages 286-317, April.

    More about this item

    Keywords

    Crop Production/Industries; Environmental Economics and Policy; Productivity Analysis; Risk and Uncertainty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:170216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.