IDEAS home Printed from https://ideas.repec.org/p/ags/aaea13/151213.html
   My bibliography  Save this paper

An Assessment of the Canadian Federal-Provincial Crop Production Insurance Program under Future Climate Change Scenarios in Ontario

Author

Listed:
  • Li, Shuang
  • Ker, Alan P.

Abstract

Research and observations indicate climate change has and will have an impact on Ontario field crop production. Little research has been done to forecast how climate change might influence the Canadian Federal-Provincial Crop Insurance program, including its premium rates and reserve fund balances, in the future decades. This paper proposes using a mixture of two normal yield probability distribution model to model crop yield conditions under hypothetical climate change scenarios. Then superimposes Crop Insurance premium rate and reserve fund balance calculations onto the yield model to forecast their trends and fluctuation situations in the future decades. We find under the scenarios where climate change alters the probability of a lower yield year occurring and where climate change alters yield averages, both have more significant impacts on premium rates and reserve fund balances, compared to the scenarios where climate change alters yield variations. The results of this research will help Agricorp Ltd. identify the likely frequency and magnitude of both insurance premium rate fluctuations and reserve fund balance fluctuations under different climate change scenarios. Therefore the results can be used to help Agricorp Ltd. identify and forecast both premium rate fluctuation risk and reserve fund liquidity risk.

Suggested Citation

  • Li, Shuang & Ker, Alan P., 2013. "An Assessment of the Canadian Federal-Provincial Crop Production Insurance Program under Future Climate Change Scenarios in Ontario," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151213, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea13:151213
    DOI: 10.22004/ag.econ.151213
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/151213/files/CI_under_climate_scenarios__AAEA.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.151213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Ackerman & Elizabeth A. Stanton, 2013. "Climate Impacts on Agriculture: A Challenge to Complacency?," GDAE Working Papers 13-01, GDAE, Tufts University.
    2. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    3. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    4. Gallagher, Paul W., 1987. "U.S. Soybean Yields: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10779, Iowa State University, Department of Economics.
    5. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    6. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    7. Alan P. Ker & Barry K. Goodwin, 2000. "Nonparametric Estimation of Crop Insurance Rates Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 463-478.
    8. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    9. Nayak, Govindaray & Turvey, Calum G., 1999. "Empirical Issues In Crop Reinsurance Decisions," 1999 Annual meeting, August 8-11, Nashville, TN 21612, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    11. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    12. Octavio A. Ramírez, 1997. "Estimation and Use of a Multivariate Parametric Model for Simulating Heteroskedastic, Correlated, Nonnormal Random Variables: The Case of Corn Belt Corn, Soybean, and Wheat Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 191-205.
    13. Charles B. Moss & J. S. Shonkwiler, 1993. "Estimating Yield Distributions with a Stochastic Trend and Nonnormal Errors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 1056-1062.
    14. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    15. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barry K. Goodwin & Nicholas E. Piggott, 2020. "Has Technology Increased Agricultural Yield Risk? Evidence from the Crop Insurance Biotech Endorsement," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1578-1597, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    2. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    3. Ker, Alan. P & Tolhurst, Tor & Liu, Yong, 2015. "Rating Area-yield Crop Insurance Contracts Using Bayesian Model Averaging and Mixture Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205211, Agricultural and Applied Economics Association.
    4. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    5. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    6. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    7. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    8. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    9. Zheng, Qiujie & Wang, H. Holly & Shi, Qinghua, 2008. "Estimating Farm Level Multivariate Yield Distribution Using Nonparametric Methods," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6509, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Ramirez, Octavio A. & Shonkwiler, J. Scott, 2017. "A Probabilistic Model of Crop Insurance Purchase Decision," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-17, January.
    11. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    12. Vitor A. Ozaki & Sujit K. Ghosh & Barry K. Goodwin & Ricardo Shirota, 2008. "Spatio-Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 951-961.
    13. Ramirez, Octavio & Shonkwiler, J. Scott, 2016. "Some Comparative Statics for Evaluating the Performance of the US Crop Insurance Program," SCC-76 Meeting, 2016, March 17-19, Pensacola, Florida 233761, SCC-76: Economics and Management of Risk in Agriculture and Natural Resources.
    14. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    15. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    16. Qiujie Zheng & H. Holly Wang & Qing Hua Shi, 2014. "Estimating bivariate yield distributions and crop insurance premiums using nonparametric methods," Applied Economics, Taylor & Francis Journals, vol. 46(18), pages 2108-2118, June.
    17. Chen, Shu-Ling & Miranda, Mario J., 2006. "Modeling Yield Distribution In High Risk Counties: Application To Texas Upland Cotton," 2006 Annual meeting, July 23-26, Long Beach, CA 21392, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Gerlt, Scott & Thompson, Wyatt & Miller, Douglas, 2014. "Exploiting the Relationship between Farm-Level Yields and County-Level Yields for Applied Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-18.
    19. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    20. Du, Xiaodong & Dong, Fengxia, 2024. "Climate Change and Dynamics of Crop Yield Distribution," 2024 Annual Meeting, July 28-30, New Orleans, LA 343786, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea13:151213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.