IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v46y2015i2p245-257.html
   My bibliography  Save this article

Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance

Author

Listed:
  • Jesse B. Tack
  • David Ubilava

Abstract

Predictive models of climatic phenomena can aid in insurance program design and decision making. Extreme weather outcomes have been linked to the El Niño Southern Oscillation (ENSO), which globally impacts agricultural production. This study demonstrates that extreme ENSO events alter cotton yield distributions in the Southeastern United States. These impacts translate into economically meaningful effects on crop insurance premium rates. Commercial insurers can use publicly available information to determine if government-set premium rates are mispriced, and in turn extract economic rents via the federally mandated Standard Reinsurance Agreement. By ceding underpriced policies in El Niño and La Niña years, we find that private insurance companies can reduce paid indemnities by 10–15% on average.

Suggested Citation

  • Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
  • Handle: RePEc:bla:agecon:v:46:y:2015:i:2:p:245-257
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/agec.12154
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard H. Day, 1965. "Probability Distributions of Field Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(3), pages 713-741.
    2. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    3. Paul Gallagher, 1987. "U.S. Soybean Yields: Estimation and Forecasting with Nonsymmetric Disturbances," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(4), pages 796-803.
    4. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    5. Allan D. Brunner, 2002. "El Niño and World Primary Commodity Prices: Warm Water or Hot Air?," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 176-183, February.
    6. Benjamin Collier & Ani L. Katchova & Jerry R. Skees, 2011. "Loan portfolio performance and El Niño, an intervention analysis," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(1), pages 98-119, May.
    7. Ubilava, David & holt, Matt, 2013. "El Ni~no southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 1-25.
    8. Gallagher, Paul W., 1987. "U.S. Soybean Yields: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10779, Iowa State University, Department of Economics.
    9. Bruce J. Sherrick & Fabio C. Zanini & Gary D. Schnitkey & Scott H. Irwin, 2004. "Crop Insurance Valuation under Alternative Yield Distributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 406-419.
    10. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    11. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    12. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    13. Denis Nadolnyak & Dmitry Vedenov & James Novak, 2008. "Information Value of Climate-Based Yield Forecasts in Selecting Optimal Crop Insurance Coverage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1248-1255.
    14. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    15. Messina, C. D. & Hansen, J. W. & Hall, A. J., 1999. "Land allocation conditioned on El Nino-Southern Oscillation phases in the Pampas of Argentina," Agricultural Systems, Elsevier, vol. 60(3), pages 197-212, June.
    16. Mario J. Miranda & Katie Farrin, 2012. "Index Insurance for Developing Countries," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(3), pages 391-427.
    17. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    18. Cabrera, Victor E. & Letson, David & Podesta, Guillermo, 2007. "The value of climate information when farm programs matter," Agricultural Systems, Elsevier, vol. 93(1-3), pages 25-42, March.
    19. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    20. Ubilava, David & Helmers, C Gustav, 2012. "Forecasting ENSO with a smooth transition autoregressive model," MPRA Paper 36890, University Library of Munich, Germany.
    21. Chia‐Chien Chang & Shih‐Kuei Lin & Min‐Teh Yu, 2011. "Valuation of Catastrophe Equity Puts With Markov‐Modulated Poisson Processes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(2), pages 447-473, June.
    22. Jerry R. Skees & Jason Hartell & Anne G. Murphy, 2007. "Using Index-Based Risk Transfer Products to Facilitate Micro Lending in Peru and Vietnam," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1255-1261.
    23. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    24. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    25. Hall, Anthony D. & Skalin, Joakim & Teräsvirta, Timo, 1998. "A nonlinear time series model of El Niño," SSE/EFI Working Paper Series in Economics and Finance 263, Stockholm School of Economics.
    26. Barry K. Goodwin, 2008. "Climate Variability Implications for Agricultural Crop Production and Risk Management: Discussion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1263-1264.
    27. Barry K. Goodwin, 2001. "Problems with Market Insurance in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 643-649.
    28. Barry J. Barnett & Dmitry V. Vedenov, 2007. "Is There a Viable Market for Area-Based Crop Insurance?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 508-519.
    29. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    30. James W. Mjelde & Troy N. Thompson & Clair J. Nixon, 1996. "Government Institutional Effects on the Value of Seasonal Climate Forecasts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(1), pages 175-188.
    31. Ker, Alan P. & McGowan, Pat, 2000. "Weather-Based Adverse Selection And The U.S. Crop Insurance Program: The Private Insurance Company Perspective," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-25, December.
    32. Barnett, Barry J. & Black, J. Roy & Hu, Yingyao & Skees, Jerry R., 2005. "Is Area Yield Insurance Competitive with Farm Yield Insurance?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 30(2), pages 1-17, August.
    33. Stephens M. Stohs & Jeffrey T. LaFrance, 2004. "A learning rule for inferring local distributions over space and time," Monash Economics Working Papers archive-29, Monash University, Department of Economics.
    34. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    35. Charles B. Moss & J. S. Shonkwiler, 1993. "Estimating Yield Distributions with a Stochastic Trend and Nonnormal Errors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 1056-1062.
    36. Ardian Harri & Keith H. Coble & Alan P. Ker & Barry J. Goodwin, 2011. "Relaxing Heteroscedasticity Assumptions in Area-Yield Crop Insurance Rating," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 703-713.
    37. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    38. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    39. Carl H. Nelson & Paul V. Preckel, 1989. "The Conditional Beta Distribution as a Stochastic Production Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 370-378.
    40. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    41. Solomon M. Hsiang & Kyle C. Meng & Mark A. Cane, 2011. "Civil conflicts are associated with the global climate," Nature, Nature, vol. 476(7361), pages 438-441, August.
    42. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    43. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    44. Marshall, Graham R. & Parton, K.A., 1996. "Risk Attitude, Planting Conditions and the Value of Climate Forecasts to a Dryland Wheat Grower," 1996 Conference (40th), February 11-16, 1996, Melbourne, Australia 156433, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaotao Li & Jinzheng Ren & Beibei Niu & Haiping Wu, 2020. "Grain Area Yield Index Insurance Ratemaking Based on Time–Space Risk Adjustment in China," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    2. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," Working Papers hal-04064759, HAL.
    3. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    4. Yaling Li & Fujin Yi & Yanjun Wang & Richard Gudaj, 2019. "The Value of El Niño-Southern Oscillation Forecasts to China’s Agriculture," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    5. Kulkarni, Kedar, 2021. "Quantifying Vulnerability of Crop Yields in India to Weather Extremes," 2021 Annual Meeting, August 1-3, Austin, Texas 313879, Agricultural and Applied Economics Association.
    6. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    7. Hong, Yanran & Yu, Jize & Su, Yuquan & Wang, Lu, 2023. "Southern oscillation: Great value of its trends for forecasting crude oil spot price volatility," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 358-368.
    8. Zhu, Yichen & Ghoshray, Atanu, 2021. "Climate Anomalies and Its Impact on U.S. Corn and Soybean Prices," 2021 Conference, August 17-31, 2021, Virtual 315271, International Association of Agricultural Economists.
    9. Bohorquez-Penuela, Camilo, 2021. "Weather Shocks and Agricultural Credit in Developing Countries: Evidence from a Second-Floor Institution," 2021 Annual Meeting, August 1-3, Austin, Texas 313994, Agricultural and Applied Economics Association.
    10. Checo, Ariadne & Mejía, Mariam & Ramírez, Francisco A., 2017. "El rol de los regímenes de precipitaciones sobre la dinámica de precios y actividad del sector agropecuario de la República Dominicana durante el período 2000-2016 [The role of rainfall regimes on ," MPRA Paper 80301, University Library of Munich, Germany.
    11. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.
    12. Fujin Yi & Mengfei Zhou & Yu Yvette Zhang, 2020. "Value of Incorporating ENSO Forecast in Crop Insurance Programs," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 439-457, March.
    13. repec:ags:aaea22:335987 is not listed on IDEAS
    14. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    15. Ubilava, David & Orlowski, Jan, 2016. "The Predictive Content of Climate Anomalies for Agricultural Production: Does ENSO Really Matter?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236281, Agricultural and Applied Economics Association.
    16. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    17. Jesse Tack & Keith Coble & Barry Barnett, 2018. "Warming temperatures will likely induce higher premium rates and government outlays for the U.S. crop insurance program," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 635-647, September.
    18. Carter, Colin A. & Schaefer, K. Aleks & Scheitrum, Daniel, 2021. "Raising cane: Hedging calamity in Australian sugar," Journal of Commodity Markets, Elsevier, vol. 21(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    2. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    3. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    4. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    5. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    6. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    7. Tack, Jesse, 2013. "A Nested Test for Common Yield Distributions with Applications to U.S. Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(1), pages 1-14, April.
    8. Gerlt, Scott & Thompson, Wyatt & Miller, Douglas, 2014. "Exploiting the Relationship between Farm-Level Yields and County-Level Yields for Applied Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-18.
    9. Ker, Alan. P & Tolhurst, Tor & Liu, Yong, 2015. "Rating Area-yield Crop Insurance Contracts Using Bayesian Model Averaging and Mixture Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205211, Agricultural and Applied Economics Association.
    10. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    11. Fujin Yi & Mengfei Zhou & Yu Yvette Zhang, 2020. "Value of Incorporating ENSO Forecast in Crop Insurance Programs," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 439-457, March.
    12. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    13. Li, Lisha, 2015. "Three essays on crop yield, crop insurance and climate change," ISU General Staff Papers 201501010800005371, Iowa State University, Department of Economics.
    14. Vitor A. Ozaki & Sujit K. Ghosh & Barry K. Goodwin & Ricardo Shirota, 2008. "Spatio-Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 951-961.
    15. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    16. Ozaki, Vitor Augusto & Olinda, Ricardo & Faria, Priscila Neves & Campos, Rogério Costa, 2014. "Estimation of the Agricultural Probability of Loss: evidence for soybean in Paraná State," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(1), January.
    17. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    18. repec:ags:aaea22:335759 is not listed on IDEAS
    19. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    20. Gerlt, Scott & Westhoff, Patrick, 2013. "Analysis of the Supplemental Coverage Option," 2013 AAEA: Crop Insurance and the Farm Bill Symposium 156704, Agricultural and Applied Economics Association.
    21. Tack, Jesse B., 2013. "The Effect of Climate on Crop Insurance Premium Rates and Producer Subsidies," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149817, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:46:y:2015:i:2:p:245-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.