IDEAS home Printed from https://ideas.repec.org/p/ags/aaea05/19364.html
   My bibliography  Save this paper

Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach

Author

Listed:
  • Lin, Huiyan
  • Lu, Kang Shou
  • Espey, Molly
  • Allen, Jeffery

Abstract

Complexity of urban systems necessitates the consideration of interdependency among various factors for land use change modeling and prediction. The objective of this study is to explore the applicability of computational neural networks in modeling urban sprawl and land use change coupled with geographic information systems (GIS) in Hilton Head Island, South Carolina. We are particularly interested in the capabilities of neural networks to identify land use patterns, to model new development, and to predict future change. A binary logistic regression model is estimated comparison. The results indicate the neural network model is an improvement over the logistic regression model in terms of prediction accuracy.

Suggested Citation

  • Lin, Huiyan & Lu, Kang Shou & Espey, Molly & Allen, Jeffery, 2005. "Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach," 2005 Annual meeting, July 24-27, Providence, RI 19364, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea05:19364
    DOI: 10.22004/ag.econ.19364
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19364/files/sp05li06.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nancy E. Bockstael, 1996. "Modeling Economics and Ecology: The Importance of a Spatial Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1168-1180.
    2. Carmen Carrión-Flores & Elena G. Irwin, 2004. "Determinants of Residential Land-Use Conversion and Sprawl at the Rural-Urban Fringe," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 889-904.
    3. Landis, John D., 1994. "The California Urban Futures Model: A New Generation of Metropolitan Simulation Models," University of California Transportation Center, Working Papers qt9pb6g3g6, University of California Transportation Center.
    4. Hite, Diane & Sohngen, Brent & Templeton, Josh, 2003. "Zoning, Development Timing, and Agricultural Land Use at the Suburban Fringe: A Competing Risks Approach," Agricultural and Resource Economics Review, Cambridge University Press, vol. 32(1), pages 145-157, April.
    5. M M Fischer, 1998. "Computational Neural Networks: A New Paradigm for Spatial Analysis," Environment and Planning A, , vol. 30(10), pages 1873-1891, October.
    6. F Wang, 1994. "The Use of Artificial Neural Networks in a Geographical Information System for Agricultural Land-Suitability Assessment," Environment and Planning A, , vol. 26(2), pages 265-284, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Cao & Suzana Dragićević & Songnian Li, 2019. "Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    2. OMRANI Hichem & CHARIF Omar & GERBER Philippe & BÓDIS Katalin & BASSE Reine Maria, 2012. "Simulation of land use changes using cellular automata and artificial neural network," LISER Working Paper Series 2012-01, Luxembourg Institute of Socio-Economic Research (LISER).
    3. Hashem Dadashpoor & Fardis Salarian, 2020. "Urban sprawl on natural lands: analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 593-614, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathleen P. Bell & Timothy J. Dalton, 2007. "Spatial Economic Analysis in Data‐Rich Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 487-501, September.
    2. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    3. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    4. Lynch, Lori & Geoghegan, Jacqueline, 2011. "FOREWORD: The Economics of Land Use Change: Advancing the Frontiers," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(3), pages 1-6, December.
    5. Carmen Carrión-Flores & Elena G. Irwin, 2017. "A fixed effects logit model of rural land conversion and zoning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(1), pages 181-208, January.
    6. Van Butsic & David J. Lewis & Lindsay Ludwig, 2011. "An Econometric Analysis of Land Development with Endogenous Zoning," Land Economics, University of Wisconsin Press, vol. 87(3), pages 412-432.
    7. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.
    8. Towe, Charles A. & Nickerson, Cynthia J. & Bockstael, Nancy E., 2005. "An Empirical Examination of Real Options and the Timing of Land Conversions," 2005 Annual meeting, July 24-27, Providence, RI 19125, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Kovacs, Kent F., 2009. "The Timing of Rapid Farmland Conversion Events: Evidence from California's Differential Assessment Program," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49252, Agricultural and Applied Economics Association.
    10. Lewis, David J. & Provencher, Bill & Butsic, Van, 2009. "The dynamic effects of open-space conservation policies on residential development density," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 239-252, May.
    11. Lewis, David J., 2010. "An economic framework for forecasting land-use and ecosystem change," Resource and Energy Economics, Elsevier, vol. 32(2), pages 98-116, April.
    12. Raja Chakir, 2009. "Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy," Land Economics, University of Wisconsin Press, vol. 85(2), pages 238-251.
    13. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    14. Kathleen Segerson & Catherine L. Kling & Nancy E. Bockstael, 2022. "Contributions of women at the intersection of agricultural economics and environmental and natural resource economics," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 38-53, March.
    15. Katharine R E Sims & Jenny Schuetz, 2007. "Environmental Regulation and Land Use Change: Do Local Wetlands Bylaws Slow the Conversion of Open Space to Residential Uses?," CID Working Papers 18, Center for International Development at Harvard University.
    16. David J. Lewis & Andrew J. Plantinga, 2007. "Policies for Habitat Fragmentation: Combining Econometrics with GIS-Based Landscape Simulations," Land Economics, University of Wisconsin Press, vol. 83(2), pages 109-127.
    17. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    18. Levente Tímár, 2011. "Rural Land Use and Land Tenure in New Zealand," Working Papers 11_13, Motu Economic and Public Policy Research.
    19. Cho, Seong-Hoon & Newman, David H., 2005. "Spatial analysis of rural land development," Forest Policy and Economics, Elsevier, vol. 7(5), pages 732-744, August.
    20. Villegas, Laura, 2019. "Integrating Econometric Models of Land Use Change with Models of Ecosystem Services and Landscape Simulations to Guide Coastal Management and Planning for Flood Control," EfD Discussion Paper 19-13, Environment for Development, University of Gothenburg.

    More about this item

    Keywords

    Land Economics/Use;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea05:19364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.