IDEAS home Printed from https://ideas.repec.org/p/aah/create/2019-17.html
   My bibliography  Save this paper

Comprehensive Testing of Linearity against the Smooth Transition Autoregressive Model

Author

Listed:
  • Dakyung Seong

    (University of California)

  • Jin Seo Cho

    (Yonsei University)

  • Timo Teräsvirta

    (Aarhus University and CREATES)

Abstract

This paper examines the null limit distribution of the quasi-likelihood ratio (QLR) statistic that tests linearity condition using the smooth transition autoregressive (STAR) model. We explicitly show that the QLR test statistic weakly converges to a functional of a Gaussian stochastic process under the null of linearity by resolving the issue of twofold identification meaning that Davies’s (1977, 1987) identification problem arises in two different ways under the null. We illustrate our theory using the exponential STAR and logistic STAR models and also conduct Monte Carlo simulations. Finally, we test for neglected nonlinearity in the German money demand, growth rates of US unemployment, and German industrial production. These empirical examples also demonstrate that the QLR test statistic complements the linearity test of the Lagrange multiplier test statistic in Teräsvirta (1994).

Suggested Citation

  • Dakyung Seong & Jin Seo Cho & Timo Teräsvirta, 2019. "Comprehensive Testing of Linearity against the Smooth Transition Autoregressive Model," CREATES Research Papers 2019-17, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2019-17
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/19/rp19_17.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jin Seo Cho & Isao Ishida & Halbert White, 2013. "Testing for Neglected Nonlinearity Using Twofold Unidentified Models under the Null and Hexic Expansions (published in: Essays in Nonlinear Time Series Econometrics, Festschrift in Honor of Timo Teras," Working papers 2013rwp-55, Yonsei University, Yonsei Economics Research Institute.
    2. Jin Seo Cho & Halbert White, 2007. "Testing for Regime Switching," Econometrica, Econometric Society, vol. 75(6), pages 1671-1720, November.
    3. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    4. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    5. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    6. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    7. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    8. Cho, Jin Seo & White, Halbert, 2018. "Directionally Differentiable Econometric Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1101-1131, October.
    9. Jin Seo Cho & Peter C. B. Phillips, 2018. "Sequentially testing polynomial model hypotheses using power transforms of regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 141-159, January.
    10. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    11. Skalin, Joakim & Terasvirta, Timo, 1999. "Another Look at Swedish Business Cycles, 1861-1988," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 359-378, July-Aug..
    12. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
    13. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    14. Cho, Jin Seo & Ishida, Isao, 2012. "Testing for the effects of omitted power transformations," Economics Letters, Elsevier, vol. 117(1), pages 287-290.
    15. Philippe J. Deschamps, 2008. "Comparing smooth transition and Markov switching autoregressive models of US unemployment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 435-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Seo Cho & Matthew Greenwood‐Nimmo & Yongcheol Shin, 2023. "Recent developments of the autoregressive distributed lag modelling framework," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 7-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Seo Cho & Jin Seok Park & Sang Woo Park, 2018. "Testing for the Conditional Geometric Mixture Distribution," Working papers 2018rwp-123, Yonsei University, Yonsei Economics Research Institute.
    2. Jin Seo Cho & Peter C. B. Phillips, 2018. "Sequentially testing polynomial model hypotheses using power transforms of regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 141-159, January.
    3. Jin Seo Cho & Matthew Greenwood‐Nimmo & Yongcheol Shin, 2023. "Recent developments of the autoregressive distributed lag modelling framework," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 7-32, February.
    4. Kyu Lee Shin & Jin Seo Cho, 2013. "Testing for Neglected Nonlinearity Using Extreme Learning Machines (published in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, Suppl. 2 (2013), 117--129.)," Working papers 2013rwp-57, Yonsei University, Yonsei Economics Research Institute.
    5. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    6. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.
    7. Afsin Sahin, 2013. "Estimating Money Demand Function by a Smooth Transition Regression Model: An Evidence for Turkey," Working Papers 791, Economic Research Forum, revised Nov 2013.
    8. Yae Ji Jun & Jin Seo Cho, 2015. "Analyzing the Interrelationship of the Statistics for Testing Neglected Nonlinearity under the Null of Linearity," Working papers 2015rwp-78, Yonsei University, Yonsei Economics Research Institute.
    9. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    10. Cho, Jin Seo & White, Halbert, 2018. "Directionally Differentiable Econometric Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1101-1131, October.
    11. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    12. Munehisa Kasuya, 2003. "Regime-Switching Approach to Monetary Policy Effects: Empirical Studies using a Smooth Transition Vector Autoregressive Model," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    13. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    14. Paolo Di Caro, 2017. "Testing and explaining economic resilience with an application to Italian regions," Papers in Regional Science, Wiley Blackwell, vol. 96(1), pages 93-113, March.
    15. Choi, Jaedo & Moon, Hyungsik Roger & Cho, Jin Seo, 2024. "Sequentially Estimating The Structural Equation By Power Transformation," Econometric Theory, Cambridge University Press, vol. 40(1), pages 98-161, February.
    16. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    17. Donayre, Luiggi, 2022. "On the behavior of Okun's law across business cycles," Economic Modelling, Elsevier, vol. 112(C).
    18. Fernando Delbianco & Andrés Fioriti & Fernando Tohmé, 2023. "Markov chains, eigenvalues and the stability of economic growth processes," Empirical Economics, Springer, vol. 64(3), pages 1347-1373, March.
    19. Gilbert Colletaz & Christophe Hurlin, 2006. "Threshold Effects of the Public Capital Productivity : An International Panel Smooth Transition Approach," Working Papers halshs-00008056, HAL.
    20. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.

    More about this item

    Keywords

    QLR test statistic; STAR model; linearity test; Gaussian process; null limit distribution; nonstandard testing problem;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2019-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.