IDEAS home Printed from https://ideas.repec.org/p/yon/wpaper/2013rwp-57.html
   My bibliography  Save this paper

Testing for Neglected Nonlinearity Using Extreme Learning Machines (published in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, Suppl. 2 (2013), 117--129.)

Author

Listed:
  • KYU LEE SHIN

    (Educational Research Institute, Inha University)

  • JIN SEO CHO

    (School of Economics, Yonsei University)

Abstract

In this study, we introduce statistics for testing neglected nonlinearity using the extreme leaning machines introduced by Huang, Zhu, and Siew (2006, Neurocomputing) and call them ELMNN tests. The ELMNN tests are very convenient and can be widely applied because they are obtained as byproducts of estimating linear models, and they can serve as quick diagnostic test statistics complementing the computational burdens of other tests. For the proposed test statistics, we provide a set of regularity conditions under which they asymptotically follow a chi-squared distribution under the null and are consistent under the alternative. We conduct Monte Carlo experiments and examine how they behave when the sample size is finite. Our experiment shows that the tests exhibit the properties desired by the theory of this paper.

Suggested Citation

  • Kyu Lee Shin & Jin Seo Cho, 2013. "Testing for Neglected Nonlinearity Using Extreme Learning Machines (published in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21, Suppl. 2 (2013), 117--129.)," Working papers 2013rwp-57, Yonsei University, Yonsei Economics Research Institute.
  • Handle: RePEc:yon:wpaper:2013rwp-57
    as

    Download full text from publisher

    File URL: http://121.254.254.220/repec/yon/wpaper/2013rwp-57.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Seo Cho & Isao Ishida & Halbert White, 2013. "Testing for Neglected Nonlinearity Using Twofold Unidentified Models under the Null and Hexic Expansions (published in: Essays in Nonlinear Time Series Econometrics, Festschrift in Honor of Timo Teras," Working papers 2013rwp-55, Yonsei University, Yonsei Economics Research Institute.
    2. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    4. Jin Seo Cho & Isao Ishida & Halbert White, 2013. "Mathematical Proofs for "Testing for Neglected Nonlinearity Using Twofold Unidentified Models under the Null and Hexic Expansions"," Working papers 2013rwp-55a, Yonsei University, Yonsei Economics Research Institute.
    5. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    6. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    7. Jin Seo Cho & Halbert White, 2007. "Testing for Regime Switching," Econometrica, Econometric Society, vol. 75(6), pages 1671-1720, November.
    8. Cho, Jin Seo & Ishida, Isao, 2012. "Testing for the effects of omitted power transformations," Economics Letters, Elsevier, vol. 117(1), pages 287-290.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    2. Dakyung Seong & Jin Seo Cho & Timo Teräsvirta, 2019. "Comprehensive Testing of Linearity against the Smooth Transition Autoregressive Model," CREATES Research Papers 2019-17, Department of Economics and Business Economics, Aarhus University.
    3. Yae Ji Jun & Jin Seo Cho, 2015. "Analyzing the Interrelationship of the Statistics for Testing Neglected Nonlinearity under the Null of Linearity," Working papers 2015rwp-78, Yonsei University, Yonsei Economics Research Institute.
    4. Jin Seo Cho & Peter C. B. Phillips, 2018. "Sequentially testing polynomial model hypotheses using power transforms of regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 141-159, January.
    5. Jin Seo Cho & Jin Seok Park & Sang Woo Park, 2018. "Testing for the Conditional Geometric Mixture Distribution," Working papers 2018rwp-123, Yonsei University, Yonsei Economics Research Institute.
    6. Jin Seo Cho & Matthew Greenwood‐Nimmo & Yongcheol Shin, 2023. "Recent developments of the autoregressive distributed lag modelling framework," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 7-32, February.
    7. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    8. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.
    9. Cho, Jin Seo & White, Halbert, 2018. "Directionally Differentiable Econometric Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1101-1131, October.
    10. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    11. Frédérique Bec & Mélika Ben Salem & Marine Carrasco, 2010. "Detecting Mean Reversion in Real Exchange Rates from a Multiple Regime star Model," Annals of Economics and Statistics, GENES, issue 99-100, pages 395-427.
    12. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    13. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    14. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    15. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    16. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    17. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    19. Bec, Frédérique & De Gaye, Annabelle, 2016. "How do oil price forecast errors impact inflation forecast errors? An empirical analysis from US, French and UK inflation forecasts," Economic Modelling, Elsevier, vol. 53(C), pages 75-88.
    20. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.

    More about this item

    Keywords

    Extreme learning machines; neglected nonlinearity; Wald test; single layer feedforward network; asymptotic distribution;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yon:wpaper:2013rwp-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: YERI (email available below). General contact details of provider: https://edirc.repec.org/data/eryonkr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.