IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics096007792030240x.html
   My bibliography  Save this article

Solutions of a disease model with fractional white noise

Author

Listed:
  • Akinlar, M.A.
  • Inc, Mustafa
  • Gómez-Aguilar, J.F.
  • Boutarfa, B.

Abstract

We consider an epidemic disease system by an additive fractional white noise to show that epidemic diseases may be more competently modeled in the fractional-stochastic settings than the ones modeled by deterministic differential equations. We generate a new SIRS model and perturb it to the fractional-stochastic systems. We study chaotic behavior at disease-free and endemic steady-state points on these systems. We also numerically solve the fractional-stochastic systems by an trapezoidal rule and an Euler type numerical method. We also associate the SIRS model with fractional Brownian motion by Wick product and determine numerical and explicit solutions of the resulting system. There is no SIRS-type model which considers fractional epidemic disease models with fractional white noise or Wick product settings which makes the paper totally a new contribution to the related science.

Suggested Citation

  • Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s096007792030240x
    DOI: 10.1016/j.chaos.2020.109840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030240X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
    2. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    3. Agarwal, Praveen & Singh, Ram, 2020. "Modelling of transmission dynamics of Nipah virus (Niv): A fractional order Approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    4. Kim, Hyunsoo & Sakthivel, Rathinasamy & Debbouche, Amar & Torres, Delfim F.M., 2020. "Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Akgül, Ali, 2018. "A novel method for a fractional derivative with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 478-482.
    6. Angstmann, C.N. & Henry, B.I. & McGann, A.V., 2016. "A fractional-order infectivity SIR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 86-93.
    7. Lebovits, Joachim & Lévy Véhel, Jacques & Herbin, Erick, 2014. "Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 678-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksejus Kononovicius & Rytis Kazakeviv{c}ius & Bronislovas Kaulakys, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Papers 2205.07563, arXiv.org, revised Jul 2022.
    2. Xin, Baogui & Peng, Wei & Kwon, Yekyung, 2020. "A discrete fractional-order Cournot duopoly game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Kononovicius, Aleksejus & Kazakevičius, Rytis & Kaulakys, Bronislovas, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Adak, Debadatta & Majumder, Abhijit & Bairagi, Nandadulal, 2021. "Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Fei Gao & Shuaiqiang Liu & Cornelis W. Oosterlee & Nico M. Temme, 2022. "Solution of integrals with fractional Brownian motion for different Hurst indices," Papers 2203.02323, arXiv.org, revised Mar 2022.
    6. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhama, Soniya & Abbas, Syed & Debbouche, Amar, 2020. "Doubly-weighted pseudo almost automorphic solutions for stochastic dynamic equations with Stepanov-like coefficients on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Alpay, Daniel & Attia, Haim & Levanony, David, 2010. "On the characteristics of a class of Gaussian processes within the white noise space setting," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1074-1104, July.
    3. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    4. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Ebrahem A. Algehyne & Musaad S. Aldhabani & Mounirah Areshi & Essam R. El-Zahar & Abdelhalim Ebaid & Hind K. Al-Jeaid, 2023. "A Proposed Application of Fractional Calculus on Time Dilation in Special Theory of Relativity," Mathematics, MDPI, vol. 11(15), pages 1-11, July.
    6. Tapiero, Charles S. & Vallois, Pierre, 2018. "Fractional Randomness and the Brownian Bridge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 835-843.
    7. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
    8. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    9. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    10. Laila F. Seddek & Abdelhalim Ebaid & Essam R. El-Zahar & Mona D. Aljoufi, 2023. "Exact Solution of Non-Homogeneous Fractional Differential System Containing 2 n Periodic Terms under Physical Conditions," Mathematics, MDPI, vol. 11(15), pages 1-12, July.
    11. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    12. Byun, Jong Hyuk & Jung, Il Hyo, 2021. "Phase-specific cancer-immune model considering acquired resistance to therapeutic agents," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    13. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    14. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    15. Wolfgang Schadner, 2019. "Risk-Neutral Momentum and Market Fear," Working Papers on Finance 1915, University of St. Gallen, School of Finance.
    16. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    17. Schadner, Wolfgang, 2020. "An idea of risk-neutral momentum and market fear," Finance Research Letters, Elsevier, vol. 37(C).
    18. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    19. Yan, Litan, 2004. "Maximal inequalities for the iterated fractional integrals," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 69-79, August.
    20. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s096007792030240x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.