IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v155y2023icp202-231.html
   My bibliography  Save this article

Limit theorems for the realised semicovariances of multivariate Brownian semistationary processes

Author

Listed:
  • Li, Yuan
  • Pakkanen, Mikko S.
  • Veraart, Almut E.D.

Abstract

In this article, we will introduce the realised semicovariance for Brownian semistationary (BSS) processes, which is obtained from the decomposition of the realised covariance matrix into components based on the signs of the returns and study its in-fill asymptotic properties. More precisely, weak convergence in the space of càdlàg functions endowed with the Skorohod topology for the realised semicovariance of a general Gaussian process with stationary increments is proved first. The proof is based on the Breuer–Major theorem and on a moment bound for sums of products of non-linearly transformed Gaussian vectors. Furthermore, we establish a corresponding stable convergence. Finally, a central limit theorem for the realised semicovariance of multivariate BSS processes is established. These results extend the limit theorems for the realised covariation to a result for non-linear functionals.

Suggested Citation

  • Li, Yuan & Pakkanen, Mikko S. & Veraart, Almut E.D., 2023. "Limit theorems for the realised semicovariances of multivariate Brownian semistationary processes," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 202-231.
  • Handle: RePEc:eee:spapps:v:155:y:2023:i:c:p:202-231
    DOI: 10.1016/j.spa.2022.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922002101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    2. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    3. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    4. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    5. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    6. Mikko S. Pakkanen, 2011. "Brownian Semistationary Processes And Conditional Full Support," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 579-586.
    7. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    8. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    2. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    3. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    4. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    5. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    6. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    7. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2014. "Discretization of Lévy semistationary processes with application to estimation," CREATES Research Papers 2014-21, Department of Economics and Business Economics, Aarhus University.
    9. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    10. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    11. Ole E. Barndorff-Nielsen & Mikko S. Pakkanen & Jürgen Schmiegel, 2013. "Assessing Relative Volatility/Intermittency/Energy Dissipation," CREATES Research Papers 2013-15, Department of Economics and Business Economics, Aarhus University.
    12. Sauri, Orimar & Veraart, Almut E.D., 2017. "On the class of distributions of subordinated Lévy processes and bases," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 475-496.
    13. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    14. Pakkanen, Mikko S., 2014. "Limit theorems for power variations of ambit fields driven by white noise," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1942-1973.
    15. Mark Podolskij & Nopporn Thamrongrat, 2015. "A weak limit theorem for numerical approximation of Brownian semi-stationary processes," CREATES Research Papers 2015-53, Department of Economics and Business Economics, Aarhus University.
    16. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    17. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    18. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    19. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
    20. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:155:y:2023:i:c:p:202-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.