IDEAS home Printed from https://ideas.repec.org/p/aah/create/2010-30.html
   My bibliography  Save this paper

Non-linear DSGE Models and The Central Difference Kalman Filter

Author

Listed:
  • Martin M. Andreasen

    (Bank of England and CREATES)

Abstract

This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Central Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models solved up to third order. A Monte Carlo study shows that this QML estimator is basically unbiased and normally distributed infi?nite samples for DSGE models solved using a second order or a third order approximation. These results hold even when structural shocks are Gaussian, Laplace distributed, or display stochastic volatility.

Suggested Citation

  • Martin M. Andreasen, 2010. "Non-linear DSGE Models and The Central Difference Kalman Filter," CREATES Research Papers 2010-30, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2010-30
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/10/rp10_30.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.
    2. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Kollmann, 2015. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 239-260, February.
    2. Andrew Binning & Junior Maih, 2015. "Sigma Point Filters For Dynamic Nonlinear Regime Switching Models," Working Papers No 4/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    5. Andreasen, Martin, 2011. "An estimated DSGE model: explaining variation in term premia," Bank of England working papers 441, Bank of England.
    6. Andreasen, Martin M., 2011. "Non-linear DSGE models and the optimized central difference particle filter," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1671-1695, October.
    7. Martin M. Andreasen & Andrew Meldrum, 2014. "Dynamic term structure models: The best way to enforce the zero lower bound," CREATES Research Papers 2014-47, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    2. Yi Wen & Huabin Wu, 2011. "Dynamics of externalities: a second-order perspective," Review, Federal Reserve Bank of St. Louis, vol. 93(May), pages 187-206.
    3. Manuel S. Santos & Adrian Peralta-Alva, 2012. "Analysis of Numerical Errors," Working Papers 2012-6, University of Miami, Department of Economics.
    4. Alessandro Cigno & Annalisa Luporini, 2018. "On the evolution of individual preferences and family rules," Working Paper series 18-07, Rimini Centre for Economic Analysis.
    5. Renato Faccini & Leonardo Melosi, 2022. "Pigouvian Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(2), pages 281-318, April.
    6. Jesús Fernández-Villaverde, 2010. "The econometrics of DSGE models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 3-49, March.
    7. Pichler Paul, 2008. "Forecasting with DSGE Models: The Role of Nonlinearities," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-35, July.
    8. Doh, Taeyoung, 2011. "Yield curve in an estimated nonlinear macro model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1229-1244, August.
    9. Amisano, Gianni & Tristani, Oreste, 2010. "Euro area inflation persistence in an estimated nonlinear DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1837-1858, October.
    10. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.

    More about this item

    Keywords

    Non-linear filtering; Non-Gaussian shocks; Quasi Maximum Likelihood; Stochastic volatility; Third order perturbation.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2010-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.