IDEAS home Printed from https://ideas.repec.org/p/aah/create/2020-02.html
   My bibliography  Save this paper

Risk Matters: Breaking Certainty Equivalence

Author

Listed:
  • Juan Carlos Parra-Alvarez

    (Aarhus University, CREATES and the Danish Finance Institute)

  • Hamza Polattimur

    (Universität Hamburg)

  • Olaf Posch

    (Universität Hamburg and CREATES)

Abstract

In this paper we use the property that certainty equivalence, as implied by a first-order approximation to the solution of stochastic discrete-time models, breaks in its equivalent continuous-time version. We study the extent to which a first-order approximated solution built by perturbation methods accounts for risk. We show that risk matters economically in a real business cycle (RBC) model with habit formation and capital adjustment costs and that neglecting risk leads to substantial pricing errors. A first-order approximation in continuous time reduces pricing errors by 90 percent relative to the certainty equivalent linear solution.

Suggested Citation

  • Juan Carlos Parra-Alvarez & Hamza Polattimur & Olaf Posch, 2020. "Risk Matters: Breaking Certainty Equivalence," CREATES Research Papers 2020-02, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2020-02
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/20/rp20_02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chang,Fwu-Ranq, 2009. "Stochastic Optimization in Continuous Time," Cambridge Books, Cambridge University Press, number 9780521541947.
    2. de Groot, Oliver, 2013. "Computing the risky steady state of DSGE models," Economics Letters, Elsevier, vol. 120(3), pages 566-569.
    3. Leonid Kogan & Raman Uppal, "undated". "Risk Aversion and Optimal Portfolio Policies in Partial and General Equilibrium Economies," Rodney L. White Center for Financial Research Working Papers 13-00, Wharton School Rodney L. White Center for Financial Research.
    4. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    5. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    6. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252, Elsevier.
    7. Martin Andreasen, 2012. "On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 295-316, July.
    8. Parra-Alvarez, Juan Carlos, 2018. "A Comparison Of Numerical Methods For The Solution Of Continuous-Time Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 22(6), pages 1555-1583, September.
    9. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    10. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.
    11. Harl E. Ryder & Geoffrey M. Heal, 1973. "Optimal Growth with Intertemporally Dependent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(1), pages 1-31.
    12. Martin Lettau & Sydney Ludvigson, 2009. "Euler Equation Errors," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 255-283, April.
    13. Lawrence J. Christiano & Michele Boldrin & Jonas D. M. Fisher, 2001. "Habit Persistence, Asset Returns, and the Business Cycle," American Economic Review, American Economic Association, vol. 91(1), pages 149-166, March.
    14. Collard, Fabrice & Juillard, Michel, 2001. "A Higher-Order Taylor Expansion Approach to Simulation of Stochastic Forward-Looking Models with an Application to a Nonlinear Phillips Curve Model," Computational Economics, Springer;Society for Computational Economics, vol. 17(2-3), pages 125-139, June.
    15. Constantinides, George M, 1990. "Habit Formation: A Resolution of the Equity Premium Puzzle," Journal of Political Economy, University of Chicago Press, vol. 98(3), pages 519-543, June.
    16. Judd, Kenneth L., 1996. "Approximation, perturbation, and projection methods in economic analysis," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 12, pages 509-585, Elsevier.
    17. Chang,Fwu-Ranq, 2004. "Stochastic Optimization in Continuous Time," Cambridge Books, Cambridge University Press, number 9780521834063.
    18. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    19. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    20. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    21. Lars Peter Hansen & John C. Heaton & Nan Li, 2008. "Consumption Strikes Back? Measuring Long-Run Risk," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 260-302, April.
    22. Miles S. Kimball, 1990. "Precautionary Saving and the Marginal Propensity to Consume," NBER Working Papers 3403, National Bureau of Economic Research, Inc.
    23. Olaf Posch, 2018. "Resurrecting the New-Keynesian Model: (Un)conventional Policy and the Taylor Rule," CESifo Working Paper Series 6925, CESifo.
    24. Jermann, Urban J., 1998. "Asset pricing in production economies," Journal of Monetary Economics, Elsevier, vol. 41(2), pages 257-275, April.
    25. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    26. Pierlauro Lopez & David Lopez-Salido & Francisco Vazquez-Grande, 2018. "Risk-Adjusted Linearizations of Dynamic Equilibrium Models," Working papers 702, Banque de France.
    27. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    28. Ruge-Murcia, Francisco, 2012. "Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 914-938.
    29. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    30. Meyer-Gohde, Alexander, 2015. "Risk-Sensitive Linear Approximations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113057, Verein für Socialpolitik / German Economic Association.
    31. Detemple, Jerome B & Zapatero, Fernando, 1991. "Asset Prices in an Exchange Economy with Habit Formation," Econometrica, Econometric Society, vol. 59(6), pages 1633-1657, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Vladimir Rodríguez-Caballero & J. Eduardo Vera-Valdés, 2020. "Air pollution and mobility in the Mexico City Metropolitan Area, what drives the COVID-19 death toll?," CREATES Research Papers 2020-15, Department of Economics and Business Economics, Aarhus University.
    2. Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures," CREATES Research Papers 2020-12, Department of Economics and Business Economics, Aarhus University.
    3. Posch, Olaf, 2018. "Resurrecting the New-Keynesian Model: (Un)conventional Policy and the Taylor rule," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181616, Verein für Socialpolitik / German Economic Association.
    4. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    5. Morten Ørregaard Nielsen & Antoine L. Noël, 2020. "To infinity and beyond: Efficient computation of ARCH(1) models," CREATES Research Papers 2020-13, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parra-Alvarez, Juan Carlos & Polattimur, Hamza & Posch, Olaf, 2021. "Risk matters: Breaking certainty equivalence in linear approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Parra-Alvarez, Juan Carlos, 2018. "A Comparison Of Numerical Methods For The Solution Of Continuous-Time Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 22(6), pages 1555-1583, September.
    4. Lott, Sherwin, 2019. "Perturbations in DSGE models: An odd derivatives theorem," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    5. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    6. Ludvigson, Sydney C., 2013. "Advances in Consumption-Based Asset Pricing: Empirical Tests," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 799-906, Elsevier.
    7. Lan, Hong & Meyer-Gohde, Alexander, 2011. "Solving DSGE models with a nonlinear moving average," SFB 649 Discussion Papers 2011-087, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Hong Lan & Alexander Meyer-Gohde, 2013. "Decomposing Risk in Dynamic Stochastic General Equilibrium," SFB 649 Discussion Papers SFB649DP2013-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    10. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    11. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    12. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Decomposing risk in dynamic stochastic general equilibrium," SFB 649 Discussion Papers 2013-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Yuanyuan Chen & Stuart Fowler, 2016. "Hybrid Perturbation-Projection Method for Solving DSGE Asset Pricing Models," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 649-667, December.
    14. Jesús Fernández‐Villaverde & Oren Levintal, 2018. "Solution methods for models with rare disasters," Quantitative Economics, Econometric Society, vol. 9(2), pages 903-944, July.
    15. Eric T. Swanson, 2020. "Implications of Labor Market Frictions for Risk Aversion and Risk Premia," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(2), pages 194-240, April.
    16. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, April.
    17. Meyer-Gohde, Alexander, 2021. "On the accuracy of linear DSGE solution methods and the consequences for log-normal asset pricing," IMFS Working Paper Series 154, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    18. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2018. "On DSGE Models," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 113-140, Summer.
    19. Posch, Olaf, 2011. "Risk premia in general equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1557-1576, September.
    20. Willi Semmler & Lars Grüne, 2004. "Asset Pricing with Delayed Consumption Decisions," Computing in Economics and Finance 2004 59, Society for Computational Economics.

    More about this item

    Keywords

    Certainty equivalence; Perturbation methods; Pricing errors;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2020-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.