IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/249624.html
   My bibliography  Save this book chapter

Supply chain analytics implementation: A TOE perspective

In: Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 31

Author

Listed:
  • Lodemann, Sebastian
  • Kersten, Wolfgang

Abstract

Purpose: Increasing quantity and sources of data and their potential to fuel value-adding applications in Supply Chain Management (SCM) are of considerable importance for corporations. Methodology: We utilize a qualitative research design of semi-structured expert interviews. Findings: Utilizing the Technology-Organization-Environment framework, we establish an integrated perspective: We propose that CSF possess a varying relevance to the success of the SCA (Supply Chain Analytics) project, depending on the initial drivers. Originality: While the benefit and potential value of SCA is established, the implementation of the technology remains a challenge for companies. This paper combines the concept of 'drivers' for adoption with Critical Success Factors (CSF) during the initial implementation.

Suggested Citation

  • Lodemann, Sebastian & Kersten, Wolfgang, 2021. "Supply chain analytics implementation: A TOE perspective," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 411-434, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:249624
    DOI: 10.15480/882.3976
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/249624/1/hicl-2021-31-411.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Nam, Dalwoo & Lee, Junyeong & Lee, Heeseok, 2019. "Business analytics adoption process: An innovation diffusion perspective," International Journal of Information Management, Elsevier, vol. 49(C), pages 411-423.
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    5. Queiroz, Maciel M. & Fosso Wamba, Samuel, 2019. "Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA," International Journal of Information Management, Elsevier, vol. 46(C), pages 70-82.
    6. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    7. Kwon, Ohbyung & Lee, Namyeon & Shin, Bongsik, 2014. "Data quality management, data usage experience and acquisition intention of big data analytics," International Journal of Information Management, Elsevier, vol. 34(3), pages 387-394.
    8. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    9. Denolf, Janne M. & Trienekens, Jacques H. & Wognum, P.M. (Nel) & Schütz, Verena & van der Vorst, Jack G.A.J. & Omta, S.W.F. (Onno), 2018. "“Actionable” critical success factors for supply chain information system implementations," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    10. Kim, Sanghyun & Garrison, Gary, 2010. "Understanding users’ behaviors regarding supply chain technology: Determinants impacting the adoption and implementation of RFID technology in South Korea," International Journal of Information Management, Elsevier, vol. 30(5), pages 388-398.
    11. Matta, Vic & Koonce, David & Jeyaraj, Anand, 2012. "Initiation, Experimentation, Implementation of innovations: The case for Radio Frequency Identification Systems," International Journal of Information Management, Elsevier, vol. 32(2), pages 164-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Hazen, Benjamin T. & Weigel, Fred K. & Ezell, Jeremy D. & Boehmke, Bradley C. & Bradley, Randy V., 2017. "Toward understanding outcomes associated with data quality improvement," International Journal of Production Economics, Elsevier, vol. 193(C), pages 737-747.
    3. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    5. Hausladen, Iris & Schosser, Maximilian, 2020. "Towards a maturity model for big data analytics in airline network planning," Journal of Air Transport Management, Elsevier, vol. 82(C).
    6. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    7. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    8. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    9. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    10. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    11. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    12. Wang, Hui & Gong, Qiguo & Wang, Shouyang, 2017. "Information processing structures and decision making delays in MRP and JIT," International Journal of Production Economics, Elsevier, vol. 188(C), pages 41-49.
    13. Kalaitzi, Dimitra & Tsolakis, Naoum, 2022. "Supply chain analytics adoption: Determinants and impacts on organisational performance and competitive advantage," International Journal of Production Economics, Elsevier, vol. 248(C).
    14. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    15. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Traditional Marketing Analytics, Big Data Analytics, Big Data System Quality and the Success of New Product Development," OSF Preprints 9auec, Center for Open Science.
    16. Elisabetta Raguseo & Claudio Vitari, 2017. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," Grenoble Ecole de Management (Post-Print) halshs-01923259, HAL.
    17. Tino T. Herden & Steffen Bunzel, 2018. "Archetypes of Supply Chain Analytics Initiatives—An Exploratory Study," Logistics, MDPI, vol. 2(2), pages 1-20, May.
    18. Samuel Fosso Wamba & Angappa Gunasekaran & Rameshwar Dubey & Eric W. T. Ngai, 2018. "Big data analytics in operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 1-4, November.
    19. Venkatesh Mani & Catarina Delgado & Benjamin T. Hazen & Purvishkumar Patel, 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    20. Pan Liu & Shu-ping Yi, 2018. "A study on supply chain investment decision-making and coordination in the Big Data environment," Annals of Operations Research, Springer, vol. 270(1), pages 235-253, November.

    More about this item

    Keywords

    Business Analytics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:249624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.