IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v34y2014i3p387-394.html
   My bibliography  Save this article

Data quality management, data usage experience and acquisition intention of big data analytics

Author

Listed:
  • Kwon, Ohbyung
  • Lee, Namyeon
  • Shin, Bongsik

Abstract

Big data analytics associated with database searching, mining, and analysis can be seen as an innovative IT capability that can improve firm performance. Even though some leading companies are actively adopting big data analytics to strengthen market competition and to open up new business opportunities, many firms are still in the early stage of the adoption curve due to lack of understanding of and experience with big data. Hence, it is interesting and timely to understand issues relevant to big data adoption. In this study, a research model is proposed to explain the acquisition intention of big data analytics mainly from the theoretical perspectives of data quality management and data usage experience. Our empirical investigation reveals that a firm's intention for big data analytics can be positively affected by its competence in maintaining the quality of corporate data. Moreover, a firm's favorable experience (i.e., benefit perceptions) in utilizing external source data could encourage future acquisition of big data analytics. Surprisingly, a firm's favorable experience (i.e., benefit perceptions) in utilizing internal source data could hamper its adoption intention for big data analytics.

Suggested Citation

  • Kwon, Ohbyung & Lee, Namyeon & Shin, Bongsik, 2014. "Data quality management, data usage experience and acquisition intention of big data analytics," International Journal of Information Management, Elsevier, vol. 34(3), pages 387-394.
  • Handle: RePEc:eee:ininma:v:34:y:2014:i:3:p:387-394
    DOI: 10.1016/j.ijinfomgt.2014.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401214000127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2014.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Craig R. Fox & Amos Tversky, 1995. "Ambiguity Aversion and Comparative Ignorance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 585-603.
    2. Schiffels, Sebastian & Fügener, Andreas & Kolisch, Rainer & Jens Brunner, O., 2014. "On the assessment of costs in a newsvendor environment: Insights from an experimental study," Omega, Elsevier, vol. 43(C), pages 1-8.
    3. Jay B. Barney, 1986. "Strategic Factor Markets: Expectations, Luck, and Business Strategy," Management Science, INFORMS, vol. 32(10), pages 1231-1241, October.
    4. Son, Minhee & Han, Kyesook, 2011. "Beyond the technology adoption: Technology readiness effects on post-adoption behavior," Journal of Business Research, Elsevier, vol. 64(11), pages 1178-1182.
    5. Shirley Taylor & Peter A. Todd, 1995. "Understanding Information Technology Usage: A Test of Competing Models," Information Systems Research, INFORMS, vol. 6(2), pages 144-176, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    2. Yaqoob, Ibrar & Hashem, Ibrahim Abaker Targio & Gani, Abdullah & Mokhtar, Salimah & Ahmed, Ejaz & Anuar, Nor Badrul & Vasilakos, Athanasios V., 2016. "Big data: From beginning to future," International Journal of Information Management, Elsevier, vol. 36(6), pages 1231-1247.
    3. Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
    4. Shraddha Mishra & Surya Prakash Singh, 2022. "A stochastic disaster-resilient and sustainable reverse logistics model in big data environment," Annals of Operations Research, Springer, vol. 319(1), pages 853-884, December.
    5. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    6. Calvard, Thomas Stephen & Jeske, Debora, 2018. "Developing human resource data risk management in the age of big data," International Journal of Information Management, Elsevier, vol. 43(C), pages 159-164.
    7. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
    8. Gupta, Shivam & Kar, Arpan Kumar & Baabdullah, Abdullah & Al-Khowaiter, Wassan A.A., 2018. "Big data with cognitive computing: A review for the future," International Journal of Information Management, Elsevier, vol. 42(C), pages 78-89.
    9. Yonghong Ma & Xiaomeng Yang & Sen Qu & Lingkai Kong, 2022. "Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1273-1294, March.
    10. Luay Jum’a & Muhammad Ikram & Ziad Alkalha & Maher Alaraj, 2022. "Do Companies Adopt Big Data as Determinants of Sustainability: Evidence from Manufacturing Companies in Jordan," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 479-494, December.
    11. Chi-hsiang Chen, 2024. "Influence of Employees’ Intention to Adopt AI Applications and Big Data Analytical Capability on Operational Performance in the High-Tech Firms," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3946-3974, March.
    12. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    13. Lodemann, Sebastian & Kersten, Wolfgang, 2021. "Supply chain analytics implementation: A TOE perspective," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 411-434, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Haneem, Faizura & Kama, Nazri & Taskin, Nazim & Pauleen, David & Abu Bakar, Nur Azaliah, 2019. "Determinants of master data management adoption by local government organizations: An empirical study," International Journal of Information Management, Elsevier, vol. 45(C), pages 25-43.
    15. Richly, Marc A., 2022. "Big Data Analytics Capabilities: A Systematic Literature Review on Necessary Skills to Succeed in Big Data Analytics," Junior Management Science (JUMS), Junior Management Science e. V., vol. 7(5), pages 1224-1241.
    16. Farheen Naz & Anil Kumar & Abhijit Majumdar & Rohit Agrawal, 2022. "Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research," Operations Management Research, Springer, vol. 15(1), pages 378-398, June.
    17. Tugba Karaboga & Cemal Zehir & Ekrem Tatoglu & H. Aykut Karaboga & Abderaouf Bouguerra, 2023. "Big data analytics management capability and firm performance: the mediating role of data-driven culture," Review of Managerial Science, Springer, vol. 17(8), pages 2655-2684, November.
    18. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    19. Maria Hoffmann Jensen & John Stouby Persson & Peter Axel Nielsen, 2023. "Measuring benefits from big data analytics projects: an action research study," Information Systems and e-Business Management, Springer, vol. 21(2), pages 323-352, June.
    20. Patrucco, Andrea S. & Marzi, Giacomo & Trabucchi, Daniel, 2023. "The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions," Technovation, Elsevier, vol. 126(C).
    21. Meng Wang & Yalin Qin & Jiaojiao Liu & Weidong Li, 2023. "Identifying personal physiological data risks to the Internet of Everything: the case of facial data breach risks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    22. Jianmin Song & Senmao Xia & Demetris Vrontis & Arun Sukumar & Bing Liao & Qi Li & Kun Tian & Nengzhi Yao, 2022. "The Source of SMEs’ Competitive Performance in COVID-19: Matching Big Data Analytics Capability to Business Models," Information Systems Frontiers, Springer, vol. 24(4), pages 1167-1187, August.
    23. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    24. Nam, Dalwoo & Lee, Junyeong & Lee, Heeseok, 2019. "Business analytics use in CRM: A nomological net from IT competence to CRM performance," International Journal of Information Management, Elsevier, vol. 45(C), pages 233-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binod Timilsina, 2015. "Competitively Distinct Operations as a Key for Superior and Sustainable Business Performance: An Example from Walmart," Management, University of Primorska, Faculty of Management Koper, vol. 10(3), pages 273-292.
    2. Francisco Liébana-Cabanillas & Nidhi Singh & Zoran Kalinic & Elena Carvajal-Trujillo, 2021. "Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: a multi-analytical approach," Information Technology and Management, Springer, vol. 22(2), pages 133-161, June.
    3. Pan, Jing Yu & Liu, Dahai, 2022. "Mask-wearing intentions on airplanes during COVID-19 – Application of theory of planned behavior model," Transport Policy, Elsevier, vol. 119(C), pages 32-44.
    4. Hasan, Rajibul & Lowe, Ben & Petrovici, Dan, 2020. "Consumer adoption of pro-poor service innovations in subsistence marketplaces," Journal of Business Research, Elsevier, vol. 121(C), pages 461-475.
    5. Diecidue, Enrico & Wakker, Peter P, 2001. "On the Intuition of Rank-Dependent Utility," Journal of Risk and Uncertainty, Springer, vol. 23(3), pages 281-298, November.
    6. Paul-Emmanuel Pichon & Denis Bories & Christian Laborde, 2023. "The determinants of the adoption of cryptocurrencies in the tourism industry : Application to the case of hotel room reservations [Les déterminants de l'adoption des cryptomonnaies : application au," Post-Print hal-04398288, HAL.
    7. Robert P. Garrett Jr. & Jeffrey G. Covin, 2015. "Internal Corporate Venture Operations Independence and Performance: A Knowledge–Based Perspective," Entrepreneurship Theory and Practice, , vol. 39(4), pages 763-790, July.
    8. John M. de Figueiredo & Brian S. Silverman, 2017. "On the Genesis of Interfirm Relational Contracts," Strategy Science, INFORMS, vol. 2(4), pages 234-245, December.
    9. Carlos Pestana Barros & Zhongfei Chen & Peter Wanke, 2016. "Efficiency in Chinese seaports: 2002–2012," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(3), pages 295-316, September.
    10. Kim, Jongwook & Mahoney, Joseph T., 2008. "A Strategic Theory of the Firm as a Nexus of Incomplete Contracts: A Property Rights Approach," Working Papers 08-0108, University of Illinois at Urbana-Champaign, College of Business.
    11. Dequech, David, 2000. "Confidence and action: a comment on Barbalet," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 29(6), pages 503-515, November.
    12. Colombo, Massimo G. & Garrone, Paola, 1998. "Common carriers' entry into multimedia services," Information Economics and Policy, Elsevier, vol. 10(1), pages 77-105, March.
    13. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    14. Joey F George & Rui Chen & Lingyao Yuan, 2021. "Intent to purchase IoT home security devices: Fear vs privacy," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
    15. H. Henry Cao & Bing Han & David Hirshleifer & Harold H. Zhang, 2011. "Fear of the Unknown: Familiarity and Economic Decisions," Review of Finance, European Finance Association, vol. 15(1), pages 173-206.
    16. David G. Sirmon & Michael A. Hitt, 2003. "Managing Resources: Linking Unique Resources, Management, and Wealth Creation in Family Firms," Entrepreneurship Theory and Practice, , vol. 27(4), pages 339-358, October.
    17. Luís Cabral, 2018. "We’re Number 1: Price Wars for Market Share Leadership," Management Science, INFORMS, vol. 64(5), pages 2013-2030, May.
    18. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    19. Paul Juinn Bing Tan, 2013. "Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan," SAGE Open, , vol. 3(4), pages 21582440135, October.
    20. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:34:y:2014:i:3:p:387-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.