IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v160y2015icp22-32.html
   My bibliography  Save this article

Improving productivity and water use efficiency: A case study of farms in England

Author

Listed:
  • Gadanakis, Yiorgos
  • Bennett, Richard
  • Park, Julian
  • Areal, Francisco Jose

Abstract

The idea of Sustainable Intensification comes as a response to the challenge of avoiding resources such as land, water and energy being overexploited while increasing food production for an increasing demand from a growing global population. Sustainable Intensification means that farmers need to simultaneously increase yields and sustainably use limited natural resources, such as water. Within the agricultural sector water has a number of uses including irrigation, spraying, drinking for livestock and washing (vegetables, livestock buildings). In order to achieve Sustainable Intensification measures are needed that enable policy makers and managers to inform them about the relative performance of farms as well as of possible ways to improve such performance. We provide a benchmarking tool to assess water use (relative) efficiency at a farm level, suggest pathways to improve farm level productivity by identifying best practices for reducing excessive use of water for irrigation. Data envelopment analysis techniques including analysis of returns to scale were used to evaluate any excess in agricultural water use of 66 horticulture farms based on different river basin catchments across England. We found that farms in the sample can reduce on average water requirements by 35% to achieve the same output (Gross Margin) when compared to their peers on the frontier. In addition, 47% of the farms operate under increasing returns to scale, indicating that farms will need to develop economies of scale to achieve input cost savings. Regarding the adoption of specific water use efficiency management practices, we found that the use of a decision support tool, recycling water and the installation of trickle/drip/spray lines irrigation system has a positive impact on water use efficiency at a farm level whereas the use of other irrigation systems such as the overhead irrigation system was found to have a negative effect on water use efficiency.

Suggested Citation

  • Gadanakis, Yiorgos & Bennett, Richard & Park, Julian & Areal, Francisco Jose, 2015. "Improving productivity and water use efficiency: A case study of farms in England," Agricultural Water Management, Elsevier, vol. 160(C), pages 22-32.
  • Handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:22-32
    DOI: 10.1016/j.agwat.2015.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741530038X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfons Oude Lansink & Ky–sti Pietola, 2002. "Effciency and productivity of conventional and organic farms in Finland 1994--1997," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 29(1), pages 51-66, March.
    2. Jean-Paul Chavas & Ragan Petrie & Michael Roth, 2005. "Farm Household Production Efficiency: Evidence from The Gambia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 160-179.
    3. Borgia, Cecilia & García-Bolaños, Mariana & Li, Tao & Gómez-Macpherson, Helena & Comas, Jordi & Connor, David & Mateos, Luciano, 2013. "Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania," Agricultural Water Management, Elsevier, vol. 121(C), pages 19-26.
    4. Matthews, Kent, 2013. "Risk management and managerial efficiency in Chinese banks: A network DEA framework," Omega, Elsevier, vol. 41(2), pages 207-215.
    5. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    6. Speelman, Stijn & D'Haese, Marijke & Buysse, Jeroen & D'Haese, Luc, 2008. "A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa," Agricultural Systems, Elsevier, vol. 98(1), pages 31-39, July.
    7. Frija, Aymen & Chebil, Ali & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2009. "Water use and technical efficiencies in horticultural greenhouses in Tunisia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1509-1516, November.
    8. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    9. Abdul Wadud & Ben White, 2000. "Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1665-1673.
    10. G. Karagiannis & V. Tzouvelekas & A. Xepapadeas, 2003. "Measuring Irrigation Water Efficiency with a Stochastic Production Frontier," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 57-72, September.
    11. Chellattan Veettil, Prakashan & Ashok, Arathy & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2011. "Sub-vector Efficiency analysis in Chance Constrained Stochastic DEA: An application to irrigation water use in the Krishna river basin, India," 122nd Seminar, February 17-18, 2011, Ancona, Italy 98978, European Association of Agricultural Economists.
    12. Shinji Kaneko & Katsuya Tanaka & Tomoyo Toyota & Shunsuke Managi, 2004. "Water efficiency of agricultural production in China: regional comparison from 1999 to 2002," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 3(3/4), pages 231-251.
    13. Knox, J.W. & Kay, M.G. & Weatherhead, E.K., 2012. "Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 3-8.
    14. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    15. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    16. Van Passel, Steven & Nevens, Frank & Mathijs, Erik & Van Huylenbroeck, Guido, 2007. "Measuring farm sustainability and explaining differences in sustainable efficiency," Ecological Economics, Elsevier, vol. 62(1), pages 149-161, April.
    17. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    18. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    19. Lilienfeld, Amy & Asmild, Mette, 2007. "Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 73-82, December.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Frija, Aymen & Chebil, Ali & Abdelkafi, Belhassen, 2012. "Irrigation water use efficiency in collective irrigated schemes of Tunisia: determinants and potential irrigation cost reduction," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-10.
    22. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    23. Mette Asmild & Jens Leth Hougaard, 2006. "Economic versus environmental improvement potentials of Danish pig farms," Agricultural Economics, International Association of Agricultural Economists, vol. 35(2), pages 171-181, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, Helga & Marques, Rui Cunha, 2017. "An analytical review of irrigation efficiency measured using deterministic and stochastic models," Agricultural Water Management, Elsevier, vol. 184(C), pages 28-35.
    2. Jakub Staniszewski & Łukasz Kryszak, 2022. "Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries," Agriculture, MDPI, vol. 12(3), pages 1-19, February.
    3. Zhuo-wan Liu & Tomas Balezentis & Yao-yao Song & Guo-liang Yang, 2019. "Estimating Capacity Utilization of Chinese State Farms," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
    4. Buttinelli, Rebecca & Cortignani, Raffaele & Caracciolo, Francesco, 2024. "Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy," Agricultural Water Management, Elsevier, vol. 295(C).
    5. Guofeng Wang & Nan Lin & Xiaoxue Zhou & Zhihui Li & Xiangzheng Deng, 2018. "Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    6. Long, Kaisheng & Pijanowski, Bryan C., 2017. "Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales," Land Use Policy, Elsevier, vol. 69(C), pages 502-511.
    7. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Watkins, K. Bradley & Henry, Chris G. & Hardke, Jarrod T. & Mane, Ranjitsinh U. & Mazzanti, Ralph & Baker, Ron, 2021. "Non-radial technical efficiency measurement of irrigation water relative to other inputs used in Arkansas rice production," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Ali, M.K., 2018. "Estimation of irrigation water use efficiency with a stochastic frontier model," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277354, International Association of Agricultural Economists.
    10. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Nguyen Bich Hong & Mitsuyasu Yabe, 2017. "Improvement in irrigation water use efficiency: a strategy for climate change adaptation and sustainable development of Vietnamese tea production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1247-1263, August.
    12. Ming Zhang & Jiayan Qin & Hong Tan & Heliang Mao & Xianjin Tu & Juanfeng Jian, 2023. "Education level of farmers, market-oriented reforms, and the utilization efficiency of agricultural water resources in China," Economic Change and Restructuring, Springer, vol. 56(6), pages 3927-3947, December.
    13. Aizhi Yu & Entai Cai & Min Yang & Zhishan Li, 2022. "An Analysis of Water Use Efficiency of Staple Grain Productions in China: Based on the Crop Water Footprints at Provincial Level," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    14. Emad S. Aljohani & Benaissa Chidmi, 2024. "Analyzing Technical Efficiency in Cereal Production across Selected European Union Countries," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    15. Ke-Liang Wang & Jianguo Wang & Jianming Wang & Lili Ding & Mingsong Zhao & Qunwei Wang, 2020. "Investigating the spatiotemporal differences and influencing factors of green water use efficiency of Yangtze River Economic Belt in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    16. Yiorgos Gadanakis & Jorge Campos-González & Philip Jones, 2024. "Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data," Agriculture, MDPI, vol. 14(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    2. Chebil, Ali & Frija, Iheb & Bahri, Walid, 2014. "Irrigation water efficiency in wheat production in Chbika (Tunisia):Parametric versus Nonparametric Comparisons," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-14.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    4. Yiorgos Gadanakis & Francisco José Areal, 2020. "Accounting for rainfall and the length of growing season in technical efficiency analysis," Operational Research, Springer, vol. 20(4), pages 2583-2608, December.
    5. Pereira, Helga & Marques, Rui Cunha, 2017. "An analytical review of irrigation efficiency measured using deterministic and stochastic models," Agricultural Water Management, Elsevier, vol. 184(C), pages 28-35.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    7. Zhuo-wan Liu & Tomas Balezentis & Yao-yao Song & Guo-liang Yang, 2019. "Estimating Capacity Utilization of Chinese State Farms," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
    8. Watto, Muhammad, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152204, Australian Agricultural and Resource Economics Society.
    9. Watkins, K. Bradley & Henry, Chris G. & Hardke, Jarrod T. & Mane, Ranjitsinh U. & Mazzanti, Ralph & Baker, Ron, 2021. "Non-radial technical efficiency measurement of irrigation water relative to other inputs used in Arkansas rice production," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Kristof De Witte & Rui Marques, 2010. "Designing performance incentives, an international benchmark study in the water sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 189-220, June.
    11. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    12. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    13. Muhammad Arif Watto & Amin W. Mugera, 2014. "Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan," Asian Economic Journal, East Asian Economic Association, vol. 28(3), pages 301-322, September.
    14. Frija, Aymen & Chebil, Ali & Abdelkafi, Belhassen, 2012. "Irrigation water use efficiency in collective irrigated schemes of Tunisia: determinants and potential irrigation cost reduction," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-10.
    15. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    16. Calogero Guccio & Marco Ferdinando Martorana & Luisa Monaco, 2016. "Evaluating the impact of the Bologna Process on the efficiency convergence of Italian universities: a non-parametric frontier approach," Journal of Productivity Analysis, Springer, vol. 45(3), pages 275-298, June.
    17. Dana PANCUROVA & Stefan LYOCSA, 2013. "Determinants of Commercial Banks’ Efficiency: Evidence from 11 CEE Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(2), pages 152-179, May.
    18. Frija, Aymen & Chebil, Ali & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2009. "Water use and technical efficiencies in horticultural greenhouses in Tunisia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1509-1516, November.
    19. Watto, Muhammad Arif & Mugera, Amin William, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," Working Papers 144943, University of Western Australia, School of Agricultural and Resource Economics.
    20. Varghese, Shalet Korattukudy & Veettil, Prakashan Chellattan & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2013. "Estimating the causal effect of water scarcity on the groundwater use efficiency of rice farming in South India," Ecological Economics, Elsevier, vol. 86(C), pages 55-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.