IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209259.html
   My bibliography  Save this book chapter

Adaptive Intra-Logistics

In: Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 20

Author

Listed:
  • Yousefifar, Ramin
  • Popp, Julian
  • Beyer, Theresa
  • Wehking, Karl-Heinz

Abstract

Many Intra-Logistics systems are designed over the course of several years in order to ensure the logistical supply of an assembly or production area for a fixed number of years. In the past this approach was economically successful. However, today's globalized markets require different procedures. Adaptive Intra-Logistics systems will be required in the near future in order to ensure adaptability to changes in assembly or production (e.g. volume fluctuations, additional products, changed geometry of products) without requiring costly new investments. The adaptability of these systems could be achieved through modular design and dynamic planning. In this paper a new planning methodology for Intra-Logistics systems is described. This planning methodology is based on features of Multi-Agent Systems such as self-organization. These characteristics of our planning methodology make it particularly suited for autonomous logisticsmodules and contribute to the adaptive Intra-Logistics systems. Furthermore, the current literature on the technical alternatives for reach adaptive Intra-Logistics is explored. Especially modular design is key to coping with rapidly changing production environments. Therefore, four different new logistics concepts, which have been selected using a rating matrix and questions catalogs, are presented. These concepts were verified and validated in simulations.

Suggested Citation

  • Yousefifar, Ramin & Popp, Julian & Beyer, Theresa & Wehking, Karl-Heinz, 2015. "Adaptive Intra-Logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg Internationa, volume 20, pages 285-304, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209259
    DOI: 10.15480/882.1264
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209259/1/hicl-2015-20-285.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.1264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    2. Barad, M. & Even Sapir, D., 2003. "Flexibility in logistic systems--modeling and performance evaluation," International Journal of Production Economics, Elsevier, vol. 85(2), pages 155-170, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    2. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    3. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Fitzgerald, Guy & Barad, Miryam & Papazafeiropoulou, Anastasia & Alaa, Ghada, 2009. "A framework for analyzing flexibility of generic objects," International Journal of Production Economics, Elsevier, vol. 122(1), pages 329-339, November.
    5. Biao Xiong & Bixin Li & Rong Fan & Qingzhong Zhou & Wu Li, 2017. "Modeling and Simulation for Effectiveness Evaluation of Dynamic Discrete Military Supply Chain Networks," Complexity, Hindawi, vol. 2017, pages 1-9, October.
    6. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Bortolini, Marco & Faccio, Maurizio & Ferrari, Emilio & Gamberi, Mauro & Pilati, Francesco, 2017. "Time and energy optimal unit-load assignment for automatic S/R warehouses," International Journal of Production Economics, Elsevier, vol. 190(C), pages 133-145.
    8. Shi, Ye & Yu, Yugang & Dong, Yuxuan, 2021. "Warehousing platform’s revenue management: A dynamic model of coordinating space allocation for self-use and rent," European Journal of Operational Research, Elsevier, vol. 293(1), pages 167-176.
    9. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    10. de Jesus Pacheco, Diego Augusto & Møller Clausen, Daniel & Bumann, Jendrik, 2023. "A multi-method approach for reducing operational wastes in distribution warehouses," International Journal of Production Economics, Elsevier, vol. 256(C).
    11. Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
    12. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    13. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Kayakutlu, Gulgun & Buyukozkan, Gulcin, 2011. "Assessing performance factors for a 3PL in a value chain," International Journal of Production Economics, Elsevier, vol. 131(2), pages 441-452, June.
    15. Bethlehem Tamiru Gizaw & Alev Taskin Gumus, 2016. "Humanitarian Relief Supply Chain Performance Evaluation: A Literature Review," International Journal of Marketing Studies, Canadian Center of Science and Education, vol. 8(2), pages 105-120, April.
    16. Khalid Aljohani, 2023. "Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    17. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    18. Cragg, Tony & Sauvage, Thierry & Haouari, Mohammed & Chraibi, Sarrah & Houssaini, Oussama El Khalil, 2018. "Running the machine faster: Acceleration, humans and warehousing," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 3-22, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    19. Ming-Jong Yao & Jia-Yen Huang, 2017. "Optimal lot-sizing and joint replenishment strategy under a piecewise linear warehousing cost structure," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 791-803, March.
    20. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.