IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v190y2017icp133-145.html
   My bibliography  Save this article

Time and energy optimal unit-load assignment for automatic S/R warehouses

Author

Listed:
  • Bortolini, Marco
  • Faccio, Maurizio
  • Ferrari, Emilio
  • Gamberi, Mauro
  • Pilati, Francesco

Abstract

Effectiveness in warehouse design and operations is crucial for the industrial companies to be competitive in the market arena by reducing the response time and inbound costs, increasing their global service level. Storage assignment deals with the definition of effective strategies to organise items into industrial warehouses to achieve high performances. This paper enhances the conventional approaches on storage assignment proposing a time and energy bi-objective model for single-deep rack automatic warehouses served by aisle captive automated storage/retrieval systems (AS/RSs). The model is based on the joint minimisation of the travel time and the energy required by the cranes to S/R the unit-loads. The analytic models to compute the expected single-command cycle time and energy are integrated into a bi-objective model, optimising the load assignment. An application, taken from the beverage industry, is, finally, discussed. The different perspectives of adopting time and energy to drive the load assignment are stressed proposing a practical trade-off rule. Results highlight the possibility to balance the time cycle and the energy intensity. Within the case application, an energy saving of 12.66% respect to the time model occurs with a time efficiency decrease of about 2.52%.

Suggested Citation

  • Bortolini, Marco & Faccio, Maurizio & Ferrari, Emilio & Gamberi, Mauro & Pilati, Francesco, 2017. "Time and energy optimal unit-load assignment for automatic S/R warehouses," International Journal of Production Economics, Elsevier, vol. 190(C), pages 133-145.
  • Handle: RePEc:eee:proeco:v:190:y:2017:i:c:p:133-145
    DOI: 10.1016/j.ijpe.2016.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316301761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "Managing carbon footprints in inventory management," International Journal of Production Economics, Elsevier, vol. 132(2), pages 178-185, August.
    2. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    3. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    4. van den Berg, Jeroen P., 2002. "Analytic expressions for the optimal dwell point in an automated storage/retrieval system," International Journal of Production Economics, Elsevier, vol. 76(1), pages 13-25, March.
    5. Antonella Meneghetti & Eleonora Dal Borgo & Luca Monti, 2015. "Rack shape and energy efficient operations in automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7090-7103, December.
    6. Bonney, Maurice & Jaber, Mohamad Y., 2011. "Environmentally responsible inventory models: Non-classical models for a non-classical era," International Journal of Production Economics, Elsevier, vol. 133(1), pages 43-53, September.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    9. Manzini, Riccardo & Accorsi, Riccardo & Gamberi, Mauro & Penazzi, Stefano, 2015. "Modeling class-based storage assignment over life cycle picking patterns," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 790-800.
    10. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    11. Andrea Fumi & Laura Scarabotti & Massimiliano M. Schiraldi, 2013. "The effect of slot-code optimisation on travel times in common unit-load warehouses," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 15(4), pages 507-527.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Perotti & Lorenzo Bruno Prataviera & Marco Melacini, 2022. "Assessing the environmental impact of logistics sites through CO2eq footprint computation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1679-1694, May.
    2. Hyun-woo Jeon & Ahmad Ebrahimi & Ga-hyun Lee, 2023. "A Simulation-Based Experimental Design for Analyzing Energy Consumption and Order Tardiness in Warehousing Systems," Sustainability, MDPI, vol. 15(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    3. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    4. Tian Liu & Xianhao Xu & Hu Qin & Andrew Lim, 2016. "Travel time analysis of the dual command cycle in the split-platform AS/RS with I/O dwell point policy," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 442-460, September.
    5. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    6. Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
    7. Lanza, Giacomo & Passacantando, Mauro & ScutellĂ , Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).
    8. Mohammed Alnahhal & Bashir Salah & Rafiq Ahmad, 2022. "Increasing Throughput in Warehouses: The Effect of Storage Reallocation and the Location of Input/Output Station," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    9. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    10. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    11. Yu, Y. & de Koster, M.B.M., 2009. "On the Suboptimality of Full Turnover-Based Storage," ERIM Report Series Research in Management ERS-2009-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    13. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    15. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    16. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    17. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    18. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    19. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Robert J. Batt & Santiago Gallino, 2019. "Finding a Needle in a Haystack: The Effects of Searching and Learning on Pick-Worker Performance," Management Science, INFORMS, vol. 67(6), pages 2624-2645, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:190:y:2017:i:c:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.