IDEAS home Printed from https://ideas.repec.org/h/zbw/entr16/183731.html
   My bibliography  Save this book chapter

Multi-Method Approach to Compare the Socio-Demographic Typology of Residents and Clusters of Electricity Load Curves in a Swiss Sustainable Neighbourhood

In: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 8-9 September 2016

Author

Listed:
  • Cimmino, Francesco
  • Mastelic, Joelle
  • Genoud, Stephane

Abstract

A sustainable neighbourhood was built Switzerland by one of the leaders in this field. Half of the 400 apartments have been equipped with smart meters delivering big data on energy consumption (electricity, water, heating…). The company would like to know if it is possible to link socio-demographic typology of residents with energy consumption patterns. To answer this question we present in this article a multimethod approach combining qualitative analysis, frequently used in marketing (multiple correspondence analyses), and quantitative analysis from applied statistics to answer this question. First, we have conducted a survey among the residents of the sustainable neighbourhood to gather socio-demographic data, and then we have proposed a marketing typology of residents. In parallel, we have analysed load curves with statistical models (clustering factors, hermano beta models, coincidence factors, som, expert practice) to see if there are patterns of energy consumption and to determine groups of similar load curves. Then we have compared the discrepancies in the composition of the groups between both methods. This study is based on a single case study generating a new research hypothesis: the typology of residents based on socio-demographic data can be linked to energy consumption pattern of a household.

Suggested Citation

  • Cimmino, Francesco & Mastelic, Joelle & Genoud, Stephane, 2016. "Multi-Method Approach to Compare the Socio-Demographic Typology of Residents and Clusters of Electricity Load Curves in a Swiss Sustainable Neighbourhood," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2016), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 8-9 September 2016, pages 310-314, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
  • Handle: RePEc:zbw:entr16:183731
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/183731/1/44-ENT81-Cimmino.Mastelic.Genoud-310-314.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wehrens, Ron & Buydens, Lutgarde M. C., 2007. "Self- and Super-organizing Maps in R: The kohonen Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i05).
    2. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    3. Julie Josse & Marie Chavent & Benot Liquet & François Husson, 2012. "Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 29(1), pages 91-116, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    2. Andreas Karpf, 2014. "Expectation Formation and Social Influence," Documents de travail du Centre d'Economie de la Sorbonne 14005, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    4. Johané Nienkemper-Swanepoel & Michael J Maltitz, 2017. "Investigating the Performance of a Variation of Multiple Correspondence Analysis for Multiple Imputation in Categorical Data Sets," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 384-398, October.
    5. Saka, Umut Mete & Duzgun, Sebnem & Bazilian, Morgan D., 2024. "Analysis of world trade data with machine learning to enhance policies of mineral supply chain transparency," Resources Policy, Elsevier, vol. 89(C).
    6. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    7. Jach Agnieszka E & Marín Juan M, 2010. "Classification of Genomic Sequences via Wavelet Variance and a Self-Organizing Map with an Application to Mitochondrial DNA," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-14, July.
    8. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    9. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    10. Manuel Mendoza-Carranza & Elisabet Ejarque & Leopold A J Nagelkerke, 2018. "Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    11. Preetam Debasish Saha Roy & Prabhat Kumar Tiwari, 2019. "Knowledge discovery and predictive accuracy comparison of different classification algorithms for mould level fluctuation phenomenon in thin slab caster," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 241-254, January.
    12. Seán Schmitz & Sophia Becker & Laura Weiand & Norman Niehoff & Frank Schwartzbach & Erika von Schneidemesser, 2019. "Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
    13. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    14. Hua Chen & Shuang Dai & Fanlin Meng, 2023. "Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
    15. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    16. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    17. Mantas Svazas & Valentinas Navickas & Yuriy Bilan & Joanna Nakonieczny & Jana Spankova, 2021. "Biomass Clusterization from a Regional Perspective: The Case of Lithuania," Energies, MDPI, vol. 14(21), pages 1-15, October.
    18. Costa, Antonio & da Silva, Cristiano & Matos, Paulo, 2022. "The Brazilian financial market reaction to COVID-19: A wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 13-29.
    19. Joanna F Dipnall & Julie A Pasco & Michael Berk & Lana J Williams & Seetal Dodd & Felice N Jacka & Denny Meyer, 2016. "Into the Bowels of Depression: Unravelling Medical Symptoms Associated with Depression by Applying Machine-Learning Techniques to a Community Based Population Sample," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    20. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.

    More about this item

    Keywords

    applied statistics; typology; energy; cluster; sustainable consumption; research;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:entr16:183731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.entrenova.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.