IDEAS home Printed from https://ideas.repec.org/f/pst909.html
   My authors  Follow this author

Annalisa Stacchini

Personal Details

First Name:Annalisa
Middle Name:
Last Name:Stacchini
Suffix:
RePEc Short-ID:pst909
https://www.unibo.it/sitoweb/annalisa.stacchini2/

Affiliation

Dipartimento di Scienze Statistiche "Paolo Fortunati"
Alma Mater Studiorum - Università di Bologna

Bologna, Italy
http://www.stat.unibo.it/
RePEc:edi:dsbolit (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Guizzardi, Andrea & Stacchini, Annalisa, 2017. "Destinations strategic groups via Multivariate Competition-based IPA," Tourism Management, Elsevier, vol. 58(C), pages 40-50.
  2. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Guizzardi, Andrea & Stacchini, Annalisa, 2017. "Destinations strategic groups via Multivariate Competition-based IPA," Tourism Management, Elsevier, vol. 58(C), pages 40-50.

    Cited by:

    1. Paohui Lin & Hsientang Tsai & Tzuya Ho, 2020. "Food Safety Gaps between Consumers’ Expectations and Perceptions: Development and Verification of a Gap-Assessment Tool," IJERPH, MDPI, vol. 17(17), pages 1-17, August.
    2. Ida Rašovská & Marketa Kubickova & Kateřina Ryglová, 2021. "Importance–performance analysis approach to destination management," Tourism Economics, , vol. 27(4), pages 777-794, June.

  2. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.

    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Multiple-input multiple-output vs. single-input single-output neural network forecasting”," AQR Working Papers 201502, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2015.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    6. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”," AQR Working Papers 201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Regional Forecasting with Support Vector Regressions: The Case of Spain”," AQR Working Papers 201506, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2015.
    9. Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
    10. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    11. El houssin Ouassou & Hafsa Taya, 2022. "Forecasting Regional Tourism Demand in Morocco from Traditional and AI-Based Methods to Ensemble Modeling," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    12. Marisol Valencia Cárdenas & Juan Gabriel Vanegas López & Juan Carlos Correa Morales & Jorge Aníbal Restrepo Morales, 2017. "Comparing forecasts for tourism dynamics in Medellín, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 199-230, Enero - J.
    13. Sudeshna Ghosh, 2021. "Business Confidence and Business Tourism in Japan," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-23, February.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," IREA Working Papers 201801, University of Barcelona, Research Institute of Applied Economics, revised Jan 2018.
    15. Armand Viljoen & Andrea Saayman & Melville Saayman, 2019. "Determinants influencing inbound arrivals to Africa," Tourism Economics, , vol. 25(6), pages 856-883, September.
    16. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
    17. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    18. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    19. Valencia Cárdenas, Marisol & Vanegas López, Juan Gabriel & Correa Morales, Juan Carlos & Restrepo Morales, Jorge Aníbal, 2016. "Comparación de pronósticos para la dinámica del turismo en Medellín, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 199-230, December.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    21. Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).
    22. Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
    23. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    24. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," AQR Working Papers 201802, University of Barcelona, Regional Quantitative Analysis Group, revised Apr 2018.
    25. Anastasiou, Dimitris & Drakos, Konstantinos & Kapopoulos, Panayotis, 2022. "Predicting international tourist arrivals in Greece with a novel sector-specific business leading indicator," MPRA Paper 113860, University Library of Munich, Germany.
    26. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    27. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    28. Ke Xu & Junli Zhang & Junhao Huang & Hongbo Tan & Xiuli Jing & Tianxiang Zheng, 2024. "Forecasting Visitor Arrivals at Tourist Attractions: A Time Series Framework with the N-BEATS for Sustainable Tourism," Sustainability, MDPI, vol. 16(18), pages 1-31, September.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Annalisa Stacchini should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.