IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v28y2022i1p200-221.html
   My bibliography  Save this article

Forecasting hotel room demand amid COVID-19

Author

Listed:
  • Hanyuan Zhang
  • Jiangping Lu

Abstract

The COVID-19 pandemic has hindered international travel considerably, greatly affecting the hotel industry. Hong Kong, as a well-known international tourist destination, has also been hit hard by the crisis. Recovery forecasts for hotel room demand are critical to managing this ongoing crisis. This study employs the autoregressive distributed lag error correction model to generate baseline forecasts of hotel room demand for Hong Kong followed by compound scenario analysis to optimize forecasts considering the pandemic’s impacts. The COVID-19 Travelable Index is designed to group source markets by their pandemic situations, vaccinations, policy responses, and health resilience. To capture pandemic-related uncertainty, this study presents three scenarios describing recovery patterns based on trough duration, the quarter for lifting travel restrictions, and the quarter for returning to baseline forecasts. Hotel demand forecasts geared toward each source market are analyzed, revealing strategies to help hotel businesses manage this crisis.

Suggested Citation

  • Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
  • Handle: RePEc:sae:toueco:v:28:y:2022:i:1:p:200-221
    DOI: 10.1177/13548166211035569
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/13548166211035569
    Download Restriction: no

    File URL: https://libkey.io/10.1177/13548166211035569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    2. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.
    3. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    4. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).
    5. Weatherford, Larry R. & Kimes, Sheryl E., 2003. "A comparison of forecasting methods for hotel revenue management," International Journal of Forecasting, Elsevier, vol. 19(3), pages 401-415.
    6. Song, Haiyan & Lin, Shanshan & Witt, Stephen F. & Zhang, Xinyan, 2011. "Impact of financial/economic crisis on demand for hotel rooms in Hong Kong," Tourism Management, Elsevier, vol. 32(1), pages 172-186.
    7. Liu, Anyu & Vici, Laura & Ramos, Vicente & Giannoni, Sauveur & Blake, Adam, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Annals of Tourism Research, Elsevier, vol. 88(C).
    8. Michael Toma & Richard McGrath & James Payne, 2009. "Hotel tax receipts and the 'Midnight in the Garden of Good and Evil': a time series intervention seasonal ARIMA model with time-varying variance," Applied Economics Letters, Taylor & Francis Journals, vol. 16(7), pages 653-656.
    9. Zhang, Hanyuan & Song, Haiyan & Wen, Long & Liu, Chang, 2021. "Forecasting tourism recovery amid COVID-19," Annals of Tourism Research, Elsevier, vol. 87(C).
    10. Fotiadis, Anestis & Polyzos, Stathis & Huan, Tzung-Cheng T.C., 2021. "The good, the bad and the ugly on COVID-19 tourism recovery," Annals of Tourism Research, Elsevier, vol. 87(C).
    11. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cindy Yoonjoung Heo & Luciano Viverit & Luís Nobre Pereira, 2024. "Does historical data still matter for demand forecasting in uncertain and turbulent times? An extension of the additive pickup time series method for SME hotels," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(1), pages 39-43, February.
    2. Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    2. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    3. Davide Provenzano & Serena Volo, 2022. "Tourism recovery amid COVID-19: The case of Lombardy, Italy," Tourism Economics, , vol. 28(1), pages 110-130, February.
    4. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    5. Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).
    6. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    7. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    8. Gaojun Zhang & Jinfeng Wu & Bing Pan & Junyi Li & Minjie Ma & Muzi Zhang & Jian Wang, 2017. "Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model," Tourism Economics, , vol. 23(7), pages 1496-1514, November.
    9. Fangming Qin & Gezhi Chen, 2022. "Vulnerability of Tourist Cities’ Economic Systems Amid the COVID-19 Pandemic: System Characteristics and Formation Mechanisms—A Case Study of 46 Major Tourist Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    10. Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
    11. Zhang, Hanyuan & Song, Haiyan & Wen, Long & Liu, Chang, 2021. "Forecasting tourism recovery amid COVID-19," Annals of Tourism Research, Elsevier, vol. 87(C).
    12. Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
    13. Yamaka, Woraphon & Zhang, Xuefeng & Maneejuk, Paravee & Ramos, Vicente, 2023. "Asymmetric effects of third-country exchange rate risk: A Markov switching approach," Annals of Tourism Research, Elsevier, vol. 103(C).
    14. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    15. Martin Henseler & Hélène Maisonnave & Asiya Maskaeva, 2021. "Economic impacts of COVID-19 on the tourism sector in Tanzania," Working Papers hal-03501722, HAL.
    16. Salesi, Vinolia Kilinaivoni & Kan Tsui, Wai Hong & Fu, Xiaowen & Gilbey, Andrew, 2022. "Strategies for South Pacific Region to address future pandemics: Implications for the aviation and tourism sectors based on a systematic literature review (2010–2021)," Transport Policy, Elsevier, vol. 125(C), pages 107-126.
    17. Yang, Yang & Zhang, Carol X. & Rickly, Jillian M., 2021. "A review of early COVID-19 research in tourism: Launching the Annals of Tourism Research's Curated Collection on coronavirus and tourism1," Annals of Tourism Research, Elsevier, vol. 91(C).
    18. Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    19. Maria Giovanna Brandano & Alessandra Faggian & Adriana C Pinate, 2024. "The impact of COVID-19 on the tourism sector in Italy: A regional spatial perspective," Tourism Economics, , vol. 30(8), pages 2181-2202, December.
    20. Wu, Tsung-Pao & Zheng, Yi & Wu, Hung-Che & Deng, Ruixin, 2024. "The causal relationship between the COVID-19, Delta and Omicron pandemic and the air transport industry: Evidence from China," Journal of Air Transport Management, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:28:y:2022:i:1:p:200-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.