IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/157.html
   My bibliography  Save this paper

On the Strong Approximation of Jump-Diffusion Processes

Author

Abstract

In financial modelling, filtering and other areas the underlying dynamics are often specified via stochastic differential equations (SDEs) of jump-diffusion type. The class of jump-diffusion SDEs that admits explicit solutions is rather limited. Consequently, there is a need for the systematic use of discrete time approximations in corresponding simulations. This paper presents a survey and new results on strong numerical schemes for SDEs of jump-diffusion type. These are relevant for scenario analysis, filtering and hedge simulation in finance. It provides a convergence theorem for the construction of strong approximations of any given order of convergence for SDEs driven by Wiener processes and Poisson random measures. The paper covers also derivative free, drift-implicit and jump adapted strong approximations. For the commutative case particular schemes are obtained. Finally, a numerical study on the accuracy of several strong schemes is presented.

Suggested Citation

  • Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:157
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp156.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    3. N. Hofmann & Eckhard Platen, 1994. "Stability of weak numerical schemes for stochastic differential equations," Published Paper Series 1994-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    4. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    5. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    6. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    8. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Pure Jump Processes," Research Paper Series 164, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Pellegrini, Clément, 2010. "Existence, uniqueness and approximation of the jump-type stochastic Schrodinger equation for two-level systems," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1722-1747, August.
    4. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    5. Szimayer, Alex & Maller, Ross A., 2007. "Finite approximation schemes for Lévy processes, and their application to optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1422-1447, October.
    6. Yuan Xia, 2011. "Multilevel Monte Carlo method for jump-diffusion SDEs," Papers 1106.4730, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    4. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
    5. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    6. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    7. Stan Olijslagers & Annelie Petersen & Nander de Vette & Sweder (S.J.G.) van Wijnbergen, 2018. "What Option Prices tell us about the ECB's Unconventional Monetary Policies," Tinbergen Institute Discussion Papers 18-096/VI, Tinbergen Institute.
    8. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Accounting for the impact of higher order moments in foreign equity option pricing model," Economic Modelling, Elsevier, vol. 28(4), pages 1726-1729, July.
    9. de Vette, Nander & Petersen, Annelie & Stan Olijslager, Stan & van Wijnbergen, Sweder, 2018. "What Option Prices tell us about the ECB's Unconventional Monetary Policies," CEPR Discussion Papers 13371, C.E.P.R. Discussion Papers.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    11. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2005. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton with Jumps," Research Paper Series 167, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Sandun Perera & Winston Buckley & Hongwei Long, 2018. "Market-reaction-adjusted optimal central bank intervention policy in a forex market with jumps," Annals of Operations Research, Springer, vol. 262(1), pages 213-238, March.
    13. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Foreign equity option pricing under stochastic volatility model with double jumps," Economic Modelling, Elsevier, vol. 28(4), pages 1857-1863, July.
    14. Colino, Jesús P. & Stute, Winfried, 2008. "Credit risk with semimartingales and risk-neutrality," DES - Working Papers. Statistics and Econometrics. WS ws085417, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    16. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    17. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    18. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    19. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    20. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.

    More about this item

    Keywords

    jump-diffusion processes; stochastic Taylor expansion; discrete time approximation; simulation; strong convergence;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.