IDEAS home Printed from https://ideas.repec.org/a/zib/zbesmy/v4y2020i2p146-151.html
   My bibliography  Save this article

Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan)

Author

Listed:
  • Faisal Mumtaz

    (Aerospace Information Research Institute, Chinese Academy of Sciences; Beijing, China)

  • Yu Tao

    (University of Chinese Academy of Sciences (UCAS), Beijing 101408, China)

  • Waqar Ahmed Bashir

    (University of Chinese Academy of Sciences (UCAS), Beijing 101408, China)

  • Mariam Kareem

    (Department of Geography, Government College University Faisalabad 38000, Pakistan)

  • Wang Gengke

    (Aerospace Information Research Institute, Chinese Academy of Sciences; Beijing, China)

  • Lingling Li

    (Aerospace Information Research Institute, Chinese Academy of Sciences; Beijing, China)

  • Barjeece Bashir

    (Aerospace Information Research Institute, Chinese Academy of Sciences; Beijing, China)

Abstract

Land use and land cover transition is continue process due to various anthropogenic activities and altering the landscape pattern of the metropolitan area of Lahore over the last two decade. LULC has been emerging masses of environmental problems including land use issues for the inhabitants, city planners, and managers. This research has been focused on the LULC change from 1998 to 2018 and their impact to forecast the landscape pattern of 2023 and 2028 in metropolitan area of Lahore. Numerous satellite imageries including land sat 5 TM and landsat 8 OLI has been undergone by supervised classification for the preparation of LULC map, land change moderler MCL to calculate the transition in LULC and CA-Markov model for predicting upcoming transitions. Results have validated by transition matrix, Google Earth data and kappa statistics. Derived results has depicted the decreased in water bodies 2.70% to 0.60%, vegetation 24.90% to 22.60% and barren land 42.50% to 35.70% and increased in built up area 29.80 % to 41% between 1998 to 2018. Finding clearly represents the loss of ecological and barren landscape over the last two decade and therefore urban expansion will likely to continue the change in landscape. This study will provide a baseline reference to urban planners and policymakers to make informed decision for management of land resources, urban land planning and for maintain sustainable land development.

Suggested Citation

  • Faisal Mumtaz & Yu Tao & Waqar Ahmed Bashir & Mariam Kareem & Wang Gengke & Lingling Li & Barjeece Bashir, 2020. "Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan)," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(2), pages 146-151, October.
  • Handle: RePEc:zib:zbesmy:v:4:y:2020:i:2:p:146-151
    DOI: 10.26480/esmy.02.2020.146.151
    as

    Download full text from publisher

    File URL: https://earthsciencesmalaysia.com/download/14095/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/esmy.02.2020.146.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Raju Rai & Yili Zhang & Basanta Paudel & Shicheng Li & Narendra Raj Khanal, 2017. "A Synthesis of Studies on Land Use and Land Cover Dynamics during 1930–2015 in Bangladesh," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    3. Daanish Mustafa & Amiera Sawas, 2013. "Urbanisation and Political Change in Pakistan: exploring the known unknowns," Third World Quarterly, Taylor & Francis Journals, vol. 34(7), pages 1293-1304.
    4. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    5. Burnham, Bruce O., 1973. "Markov Intertemporal Land Use Simulation Model," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 5(1), pages 1-6, July.
    6. Burnham, Bruce O., 1973. "Markov Intertemporal Land Use Simulation Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 5(1), pages 253-258, July.
    7. Stéphane Hallegatte & Jan Corfee-Morlot, 2011. "Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction," Climatic Change, Springer, vol. 104(1), pages 1-12, January.
    8. repec:rri:bkchap:17 is not listed on IDEAS
    9. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    4. Maples, Chellie H. & Hagerman, Amy D. & Lambert, Dayton M., 2022. "Ex-ante effects of the 2018 Agricultural Improvement Act’s grassland initiative," Land Use Policy, Elsevier, vol. 116(C).
    5. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    6. Barbosa, Carolina Cerqueira & Calijuri, Maria do Carmo & Anjinho, Phelipe da Silva & dos Santos, André Cordeiro Alves, 2023. "An integrated modeling approach to predict trophic state changes in a large Brazilian reservoir," Ecological Modelling, Elsevier, vol. 476(C).
    7. Shiqiang Du & Peijun Shi & Anton Rompaey & Jiahong Wen, 2015. "Quantifying the impact of impervious surface location on flood peak discharge in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1457-1471, April.
    8. Lindsay, Bruce E. & Dunn, Daniel L., 1979. "Land Use Projections Under Alternative Policies: A Transition Matrix Approach," Journal of the Northeastern Agricultural Economics Council, Northeastern Agricultural and Resource Economics Association, vol. 8(2), pages 1-14, October.
    9. Lindsay, Bruce E. & Dunn, Daniel L., 1979. "Land Use Projections Under Alternative Policies: A Transition Matrix Approach," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 0(Number 2), pages 1-14, October.
    10. Chih-Da Wu & Chi-Chuan Cheng & Hann-Chung Lo & Yeong-Keung Chen, 2010. "Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3773-3797, November.
    11. Lee, John G. & Lacewell, Ronald D. & Ozuna, Teofilo, Jr. & Jones, Lonnie L., 1987. "Regional Impact Of Urban Water Use On Irrigated Agriculture," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-9, December.
    12. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    13. Robert Walker, 2004. "Theorizing Land-Cover and Land-Use Change: The Case of Tropical Deforestation," International Regional Science Review, , vol. 27(3), pages 247-270, July.
    14. Fernandes, Milton Marques & Fernandes, Márcia Rodrigues de Moura & Garcia, Junior Ruiz & Matricardi, Eraldo Aparecido Trondoli & de Almeida, André Quintão & Pinto, Alexandre Siqueira & Menezes, Rômulo, 2020. "Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid region, Brazil: 1992–2030," Land Use Policy, Elsevier, vol. 99(C).
    15. Vandeveer, Lonnie R. & Drummond, H. Evan, 1976. "Estimating The Differential Change In Land Use Associated With Reservoir Construction," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 8(1), pages 1-6, July.
    16. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    17. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    18. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    19. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbesmy:v:4:y:2020:i:2:p:146-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://earthsciencesmalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.