IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3421-d171997.html
   My bibliography  Save this article

Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios

Author

Listed:
  • Rahel Hamad

    (Department of Petroleum Geosciences, Faculty of Science, Delzyan Campus, Soran University, Soran 44008, Iraq)

  • Heiko Balzter

    (Centre for Landscape and Climate Research (CLCR), School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE17RH, UK
    National Centre for Earth Observation, University of Leicester, University Road, Leicester LE17RH, UK)

  • Kamal Kolo

    (Department of Petroleum Geosciences, Faculty of Science, Delzyan Campus, Soran University, Soran 44008, Iraq
    Scientific Research Centre, Delzyan Campus, Soran University, Soran 44008, Iraq)

Abstract

Multi-temporal Landsat images from Landsat 5 Thematic Mapper (TM) acquired in 1993, 1998, 2003 and 2008 and Landsat 8 Operational Land Imager (OLI) from 2017, are used for analysing and predicting the spatio-temporal distributions of land use/land cover (LULC) categories in the Halgurd-Sakran Core Zone (HSCZ) of the National Park in the Kurdistan region of Iraq. The aim of this article was to explore the LULC dynamics in the HSCZ to assess where LULC changes are expected to occur under two different business-as-usual (BAU) assumptions. Two scenarios have been assumed in the present study. The first scenario, addresses the BAU assumption to show what would happen if the past trend in 1993–1998–2003 has continued until 2023 under continuing the United Nations (UN) sanctions against Iraq and particularly Kurdistan region, which extended from 1990 to 2003. Whereas, the second scenario represents the BAU assumption to show what would happen if the past trend in 2003–2008–2017 has to continue until 2023, viz. after the end of UN sanctions. Future land use changes are simulated to the year 2023 using a Cellular Automata (CA)-Markov chain model under two different scenarios (Iraq under siege and Iraq after siege). Four LULC classes were classified from Landsat using Random Forest (RF). Their accuracy was evaluated using κ and overall accuracy. The CA-Markov chain method in TerrSet is applied based on the past trends of the land use changes from 1993 to 1998 for the first scenario and from 2003 to 2008 for the second scenario. Based on this model, predicted land use maps for the 2023 are generated. Changes between two BAU scenarios under two different conditions have been quantitatively as well as spatially analysed. Overall, the results suggest a trend towards stable and homogeneous areas in the next 6 years as shown in the second scenario. This situation will have positive implication on the park.

Suggested Citation

  • Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3421-:d:171997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdus Samie & Xiangzheng Deng & Siqi Jia & Dongdong Chen, 2017. "Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan," Sustainability, MDPI, vol. 9(8), pages 1-17, July.
    2. Burnham, Bruce O., 1973. "Markov Intertemporal Land Use Simulation Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 5(1), pages 253-258, July.
    3. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2017. "Multi-Criteria Assessment of Land Cover Dynamic Changes in Halgurd Sakran National Park (HSNP), Kurdistan Region of Iraq, Using Remote Sensing and GIS," Land, MDPI, vol. 6(1), pages 1-17, March.
    4. Rahel Hamad & Kamal Kolo & Heiko Balzter, 2018. "Land Cover Changes Induced by Demining Operations in Halgurd-Sakran National Park in the Kurdistan Region of Iraq," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    5. Rahel Hamad & Kamal Kolo & Heiko Balzter, 2018. "Post-War Land Cover Changes and Fragmentation in Halgurd Sakran National Park (HSNP), Kurdistan Region of Iraq," Land, MDPI, vol. 7(1), pages 1-17, March.
    6. Yaobin Liu & Lu Dai & Huanhuan Xiong, 2015. "Simulation of urban expansion patterns by integrating auto-logistic regression, Markov chain and cellular automata models," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(6), pages 1113-1136, June.
    7. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    8. Burnham, Bruce O., 1973. "Markov Intertemporal Land Use Simulation Model," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 5(1), pages 1-6, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Maples, Chellie H. & Hagerman, Amy D. & Lambert, Dayton M., 2022. "Ex-ante effects of the 2018 Agricultural Improvement Act’s grassland initiative," Land Use Policy, Elsevier, vol. 116(C).
    3. Barbosa, Carolina Cerqueira & Calijuri, Maria do Carmo & Anjinho, Phelipe da Silva & dos Santos, André Cordeiro Alves, 2023. "An integrated modeling approach to predict trophic state changes in a large Brazilian reservoir," Ecological Modelling, Elsevier, vol. 476(C).
    4. Lindsay, Bruce E. & Dunn, Daniel L., 1979. "Land Use Projections Under Alternative Policies: A Transition Matrix Approach," Journal of the Northeastern Agricultural Economics Council, Northeastern Agricultural and Resource Economics Association, vol. 8(2), pages 1-14, October.
    5. Rahel Hamad & Kamal Kolo & Heiko Balzter, 2018. "Land Cover Changes Induced by Demining Operations in Halgurd-Sakran National Park in the Kurdistan Region of Iraq," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    6. Lindsay, Bruce E. & Dunn, Daniel L., 1979. "Land Use Projections Under Alternative Policies: A Transition Matrix Approach," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 0(Number 2), pages 1-14, October.
    7. Chih-Da Wu & Chi-Chuan Cheng & Hann-Chung Lo & Yeong-Keung Chen, 2010. "Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3773-3797, November.
    8. Lee, John G. & Lacewell, Ronald D. & Ozuna, Teofilo, Jr. & Jones, Lonnie L., 1987. "Regional Impact Of Urban Water Use On Irrigated Agriculture," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-9, December.
    9. Robert Walker, 2004. "Theorizing Land-Cover and Land-Use Change: The Case of Tropical Deforestation," International Regional Science Review, , vol. 27(3), pages 247-270, July.
    10. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    11. Faisal Mumtaz & Yu Tao & Waqar Ahmed Bashir & Mariam Kareem & Wang Gengke & Lingling Li & Barjeece Bashir, 2020. "Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan)," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(2), pages 146-151, October.
    12. Fernandes, Milton Marques & Fernandes, Márcia Rodrigues de Moura & Garcia, Junior Ruiz & Matricardi, Eraldo Aparecido Trondoli & de Almeida, André Quintão & Pinto, Alexandre Siqueira & Menezes, Rômulo, 2020. "Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid region, Brazil: 1992–2030," Land Use Policy, Elsevier, vol. 99(C).
    13. Vandeveer, Lonnie R. & Drummond, H. Evan, 1976. "Estimating The Differential Change In Land Use Associated With Reservoir Construction," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 8(1), pages 1-6, July.
    14. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    15. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    16. Yan Liu & Yongjiu Feng, 2016. "Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    17. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    18. Chengjie Yang & Ruren Li & Zongyao Sha, 2020. "Exploring the Dynamics of Urban Greenness Space and Their Driving Factors Using Geographically Weighted Regression: A Case Study in Wuhan Metropolis, China," Land, MDPI, vol. 9(12), pages 1-21, December.
    19. Joël Masimo Kabuanga & Onésime Mubenga Kankonda & Mehdi Saqalli & Nicolas Maestripieri & Thomas Mumuni Bilintoh & Jean-Pierre Mate Mweru & Aimé Balimbaki Liama & Radar Nishuli & Landing Mané, 2021. "Historical Changes and Future Trajectories of Deforestation in the Ituri-Epulu-Aru Landscape (Democratic Republic of the Congo)," Land, MDPI, vol. 10(10), pages 1-24, October.
    20. Yuhan Yu & Mengmeng Yu & Lu Lin & Jiaxin Chen & Dongjie Li & Wenting Zhang & Kai Cao, 2019. "National Green GDP Assessment and Prediction for China Based on a CA-Markov Land Use Simulation Model," Sustainability, MDPI, vol. 11(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3421-:d:171997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.