IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/02-26.html
   My bibliography  Save this paper

Extracting Probabilistic Information from the Prices of Interest Rate Options: Tests of Distributional Assumptions

Author

Listed:
  • Kabir K. Dutta
  • David F. Babbel

Abstract

Return distributions in general and interest rates in particular have been observed to exhibit skewness and kurtosis that cannot be explained by the (log)normal distribution. Using g-and-h distribution we derived a closed-form option pricing formula for pricing European options. We measured its performance using interest rate cap data and compared it with the option prices based on the lognormal, Burr-3, Weibull, and GB2 distributions. We observed that the g-and-h distribution exhibited a high degree of accuracy in pricing options, much better than those other distributions in extracting probabilistic information from the option market.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kabir K. Dutta & David F. Babbel, 2002. "Extracting Probabilistic Information from the Prices of Interest Rate Options: Tests of Distributional Assumptions," Center for Financial Institutions Working Papers 02-26, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:02-26
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/02/0226.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wolfgang Bühler & Marliese Uhrig‐Homburg & Ulrich Walter & Thomas Weber, 1999. "An Empirical Comparison of Forward‐Rate and Spot‐Rate Models for Valuing Interest‐Rate Options," Journal of Finance, American Finance Association, vol. 54(1), pages 269-305, February.
    2. Craig Merrill & David Babbel, 1996. "Interest‐rate option pricing revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(8), pages 859-863, December.
    3. Driessen, J.J.A.G. & Klaassen, P. & Melenberg, B., 2000. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Other publications TiSEM f96eb284-4de9-48c3-8371-8, Tilburg University, School of Economics and Management.
    4. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    5. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    6. Badrinath, S G & Chatterjee, Sangit, 1991. "A Data-Analytic Look at Skewness and Elongation in Common-Stock-Return Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 223-233, April.
    7. Patrick Navatte & Christophe Villa, 2000. "The information content of implied volatility, skewness and kurtosis: empirical evidence from long‐term CAC 40 options," European Financial Management, European Financial Management Association, vol. 6(1), pages 41-56, March.
    8. Bookstaber, Richard M & McDonald, James B, 1987. "A General Distribution for Describing Security Price Returns," The Journal of Business, University of Chicago Press, vol. 60(3), pages 401-424, July.
    9. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    10. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-472, October.
    11. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    12. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    13. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    14. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    15. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Mauler & James McDonald, 2015. "Option Pricing and Distribution Characteristics," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 579-595, April.
    2. Eeckhoudt, Louis & Schlesinger, Harris, 2008. "Changes in risk and the demand for saving," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1329-1336, October.
    3. Albrecht, Peter & Schwake, Edmund & Winter, Peter, 2007. "Quantifizierung operationeller Risiken: Der Loss Distribution Approach," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 3(1), pages 1-45.
    4. Ornelas, José Renato Haas & Barbachan, José Santiago Fajardo & Farias, Aquiles Rocha de, 2012. "Estimating relative risk aversion, risk-neutral and real-world densities using brazilian real currency options," EBAPE Working Papers 1, FGV EBAPE - Escola Brasileira de Administração Pública e de Empresas (Brazil).
    5. Marcos Massaki Abe & Eui Jung Chang & Benjamin Miranda Tabak, 2007. "Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil," Brazilian Review of Finance, Brazilian Society of Finance, vol. 5(1), pages 29-39.
    6. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    7. Andreas A. Jobst, 2007. "It's all in the data – consistent operational risk measurement and regulation," Journal of Financial Regulation and Compliance, Emerald Group Publishing Limited, vol. 15(4), pages 423-449, November.
    8. Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
    9. Sanjiv Jaggia & Alison Kelly-Hawke, 2009. "Modelling skewness and elongation in financial returns: the case of exchange-traded funds," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1305-1316.
    10. Fischer, Matthias J., 2006. "Generalized Tukey-type distributions with application to financial and teletraffic data," Discussion Papers 72/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    11. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    12. José Renato Haas Ornelas & Marcelo Yoshio Takami, 2011. "Recovering Risk-Neutral Densities from Brazilian Interest Rate Options," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 9-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Marie Briere, 2006. "Market Reactions to Central Bank Communication Policies :Reading Interest Rate Options Smiles," Working Papers CEB 38, ULB -- Universite Libre de Bruxelles.
    5. Deuskar, Prachi & Gupta, Anurag & Subrahmanyam, Marti G., 2008. "The economic determinants of interest rate option smiles," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 714-728, May.
    6. Patrick Luennemann & Dirk Mevis, 2008. "Eurosystem communication and financial market expectations," BCL working papers 30, Central Bank of Luxembourg.
    7. Rihab Bedoui & Haykel Hamdi, 2010. "Implied Risk-Neutral probability Density functions from options prices: A comparison of estimation methods," Working Papers hal-04140913, HAL.
    8. Alessandro Beber, 2001. "Determinants of the implied volatility function on the Italian Stock Market," LEM Papers Series 2001/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    10. Ornelas, José Renato Haas, 2016. "The Forecast Ability of Option-implied Densities from Emerging Markets Currencies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(1), March.
    11. Nikkinen, Jussi, 2003. "Normality tests of option-implied risk-neutral densities: evidence from the small Finnish market," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 99-116.
    12. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    13. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    14. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    15. José Renato Haas Ornelas & José Santiago Fajardo Barbachan & Aquiles Rocha de Farias, 2012. "Estimating Relative Risk Aversion, Risk-Neutral and Real-World Densities using Brazilian Real Currency Options," Working Papers Series 269, Central Bank of Brazil, Research Department.
    16. Shan Lu, 2019. "Monte Carlo analysis of methods for extracting risk‐neutral densities with affine jump diffusions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1587-1612, December.
    17. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    18. Das, Sanjiv Ranjan, 1998. "A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(3), pages 333-369, November.
    19. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    20. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:02-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.