IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v4y2019p23-40id1445.html
   My bibliography  Save this article

Application of the polyblock method to special integer chance constrained problem

Author

Listed:
  • Fatima Bellahcene

Abstract

The focus in this paper is on a special integer stochastic program with a chance constraint in which, with a given probability, a sum of independent and normally distributed random variables is bounded below. The objective is to maximize the expectation of a linear function of the random variables. The stochastic program is first reduced to an equivalent deterministic integer nonlinear program with monotonic objective and constraints functions. The resulting deterministic problem is solved using the discrete polyblock method which exploits its special structure. A numerical example is included for illustration and comparisons with LINGO, COUENNE, BONMIN and BARON solvers are performed.

Suggested Citation

  • Fatima Bellahcene, 2019. "Application of the polyblock method to special integer chance constrained problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 23-40.
  • Handle: RePEc:wut:journl:v:4:y:2019:p:23-40:id:1445
    DOI: 10.37190/ord190402
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1445%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord190402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, January.
    2. D. Li & X.L. Sun & M.P. Biswal & F. Gao, 2001. "Convexification, Concavification and Monotonization in Global Optimization," Annals of Operations Research, Springer, vol. 105(1), pages 213-226, July.
    3. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    4. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avik Pradhan & M. P. Biswal, 2017. "Multi-choice probabilistic linear programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 122-142, March.
    2. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    3. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    4. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    5. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    6. R. Caballero & E. Cerda & M. Muñoz & L. Rey, 2002. "Analysis and comparisons of some solution concepts for stochastic programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 101-123, June.
    7. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    8. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    9. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    10. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    11. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    12. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    13. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    14. Cigdem Z. Gurgur & Charles T. Morley, 2008. "Lockheed Martin Space Systems Company Optimizes Infrastructure Project-Portfolio Selection," Interfaces, INFORMS, vol. 38(4), pages 251-262, August.
    15. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    16. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    17. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    18. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    19. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:4:y:2019:p:23-40:id:1445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.