IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v105y2001i1p213-22610.1023-a1013313901854.html
   My bibliography  Save this article

Convexification, Concavification and Monotonization in Global Optimization

Author

Listed:
  • D. Li
  • X.L. Sun
  • M.P. Biswal
  • F. Gao

Abstract

We show in this paper that via certain convexification, concavification and monotonization schemes a nonconvex optimization problem over a simplex can be always converted into an equivalent better-structured nonconvex optimization problem, e.g., a concave optimization problem or a D.C. programming problem, thus facilitating the search of a global optimum by using the existing methods in concave minimization and D.C. programming. We first prove that a monotone optimization problem (with a monotone objective function and monotone constraints) can be transformed into a concave minimization problem over a convex set or a D.C. programming problem via pth power transformation. We then prove that a class of nonconvex minimization problems can be always reduced to a monotone optimization problem, thus a concave minimization problem or a D.C. programming problem. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • D. Li & X.L. Sun & M.P. Biswal & F. Gao, 2001. "Convexification, Concavification and Monotonization in Global Optimization," Annals of Operations Research, Springer, vol. 105(1), pages 213-226, July.
  • Handle: RePEc:spr:annopr:v:105:y:2001:i:1:p:213-226:10.1023/a:1013313901854
    DOI: 10.1023/A:1013313901854
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1013313901854
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1013313901854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima Bellahcene, 2019. "Application of the polyblock method to special integer chance constrained problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 23-40.
    2. So Yeon Chun & Miguel A. Lejeune, 2020. "Risk-Based Loan Pricing: Portfolio Optimization Approach with Marginal Risk Contribution," Management Science, INFORMS, vol. 66(8), pages 3735-3753, August.
    3. X. L. Sun & H. Z. Luo & D. Li, 2007. "Convexification of Nonsmooth Monotone Functions1," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 339-351, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:105:y:2001:i:1:p:213-226:10.1023/a:1013313901854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.