IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v2y2008p55-73.html
   My bibliography  Save this article

On measuring the sensitivity of the optimal portfolio allocation

Author

Listed:
  • Iwona Konarzewska

Abstract

In this paper we consider the sensitivity problem connected with portfolio optimization results when different measures of risk such as portfolio rates of return standard deviation, portfolio VaR, CVaR are minimized. Conditioning the data (represented by spectral condition index of the rates of return correlation matrix) plays, as it is shown, a crucial role in describing the properties of the models. We report on the research conducted for 13 largest firms on Warsaw Stock Exchange.

Suggested Citation

  • Iwona Konarzewska, 2008. "On measuring the sensitivity of the optimal portfolio allocation," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(2), pages 55-73.
  • Handle: RePEc:wut:journl:v:2:y:2008:p:55-73
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/99%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    2. Balbás, Beatriz & Balbás, Raquel, 2018. "Relationships between the stochastic discount factor and the optimal omega ratio," IC3JM - Estudios = Working Papers 26348, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    4. David Vidal-Tomás & Ana M. Ibáñez & José E. Farinós, 2021. "The Effect of the Launch of Bitcoin Futures on the Cryptocurrency Market: An Economic Efficiency Approach," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
    5. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    6. Massimiliano Kaucic & Mojtaba Moradi & Mohmmad Mirzazadeh, 2019. "Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    7. Yuichi Takano & Jun-ya Gotoh, 2010. "α-Conservative approximation for probabilistically constrained convex programs," Computational Optimization and Applications, Springer, vol. 46(1), pages 113-133, May.
    8. Babat, Onur & Vera, Juan C. & Zuluaga, Luis F., 2018. "Computing near-optimal Value-at-Risk portfolios using integer programming techniques," European Journal of Operational Research, Elsevier, vol. 266(1), pages 304-315.
    9. Konstantinos Anagnostopoulos & Georgios Mamanis, 2011. "Multiobjective evolutionary algorithms for complex portfolio optimization problems," Computational Management Science, Springer, vol. 8(3), pages 259-279, August.
    10. M. Schyns & Y. Crama & G. Hübner, 2010. "Optimal selection of a portfolio of options under Value-at-Risk constraints: a scenario approach," Annals of Operations Research, Springer, vol. 181(1), pages 683-708, December.
    11. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    12. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    13. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    14. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    15. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    16. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    17. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    18. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    19. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    20. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:2:y:2008:p:55-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.