IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v1y2009p77-90.html
   My bibliography  Save this article

Probability of ruin for a dependent, two-dimensional Poisson process

Author

Listed:
  • Stanisław Heilpern

Abstract

A two-dimensional, dependent Poisson risk process is investigated in the paper. Claims are divided into two classes. Within each class claims have the same distribution, but claims belonging to different classes can have different distributions and the corresponding counting processes can be dependent. This dependence is induced by a common factor. Three models of ruin and the probabilities of ruin are investigated. The influence of the degree of class dependence on the probability of ruin are studied for each model.

Suggested Citation

  • Stanisław Heilpern, 2009. "Probability of ruin for a dependent, two-dimensional Poisson process," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 77-90.
  • Handle: RePEc:wut:journl:v:1:y:2009:p:77-90
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/123%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    2. Ivanovs, Jevgenijs & Boxma, Onno, 2015. "A bivariate risk model with mutual deficit coverage," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 126-134.
    3. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    4. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    5. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.
    6. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    7. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    8. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    9. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    10. Xiaowen Shen & Kaiyong Wang & Yang Yang, 2024. "Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims," Mathematics, MDPI, vol. 12(19), pages 1-12, September.
    11. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    12. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    13. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    14. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    15. Hilda Azkiyah Surya & Herlina Napitupulu & Sukono, 2023. "Double Risk Catastrophe Reinsurance Premium Based on Houses Damaged and Deaths," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    16. Shen, Xinmei & Zhang, Yi, 2013. "Ruin probabilities of a two-dimensional risk model with dependent risks of heavy tail," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1787-1799.
    17. Dang, Lanfen & Zhu, Ning & Zhang, Haiming, 2009. "Survival probability for a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 491-496, June.
    18. Gordienko, E. & Vázquez-Ortega, P., 2018. "Continuity inequalities for multidimensional renewal risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 48-54.
    19. Cheng, Ming & Konstantinides, Dimitrios G. & Wang, Dingcheng, 2022. "Uniform asymptotic estimates in a time-dependent risk model with general investment returns and multivariate regularly varying claims," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    20. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:1:y:2009:p:77-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.