IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55405-5.html
   My bibliography  Save this article

An aperiodic chiral tiling by topological molecular self-assembly

Author

Listed:
  • Jan Voigt

    (Swiss Federal Laboratories for Materials Science and Technology)

  • Miloš Baljozović

    (Swiss Federal Laboratories for Materials Science and Technology)

  • Kévin Martin

    (SFR MATRIX)

  • Christian Wäckerlin

    (Paul-Scherrer-Institut (PSI)
    Swiss Federal Institute of Technology Lausanne (EPFL) Station 3)

  • Narcis Avarvari

    (SFR MATRIX)

  • Karl-Heinz Ernst

    (Swiss Federal Laboratories for Materials Science and Technology
    Institute of Physics of the Czech Academy of Sciences
    University of Zürich)

Abstract

Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges. The triangles feature a random distribution of mirror-isomers, with a significant excess of one isomer. Chirality at the domain boundaries causes a lateral shift, producing three distinct topological defects where six triangles converge. These defects partially contribute to the formation of supramolecular spirals. The observation of different equal-density arrangements suggests that entropy maximization must play a crucial role. Despite the potential for regular patterns, all observed tiling is aperiodic. Differences from previously reported aperiodic molecular assemblies, such as Penrose tiling, are discussed. Our findings demonstrate that two-dimensional molecular self-assembly can be governed by topological constraints, leading to aperiodic tiling induced by intermolecular forces.

Suggested Citation

  • Jan Voigt & Miloš Baljozović & Kévin Martin & Christian Wäckerlin & Narcis Avarvari & Karl-Heinz Ernst, 2025. "An aperiodic chiral tiling by topological molecular self-assembly," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55405-5
    DOI: 10.1038/s41467-024-55405-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55405-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55405-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Winfree & Furong Liu & Lisa A. Wenzler & Nadrian C. Seeman, 1998. "Design and self-assembly of two-dimensional DNA crystals," Nature, Nature, vol. 394(6693), pages 539-544, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar S. Ray & Mandrita Mondal, 2016. "Logical Inference by DNA Strand Algebra," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 29-44, March.
    2. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiang Tian & Xiyu Liu & Hongyan Zhang & Minghe Sun & Yuzhen Zhao, 2020. "A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    6. Tyler G Moore & Max H Garzon & Russell J Deaton, 2015. "Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    7. Shivendra Pandey & Daniel Johnson & Ryan Kaplan & Joseph Klobusicky & Govind Menon & David H Gracias, 2014. "Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    8. Wang, Liqiu & Zhang, Yuxiang & Cheng, Lin, 2009. "Magic microfluidic T-junctions: Valving and bubbling," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1530-1537.
    9. Aleck Johnsen & Ming-Yang Kao & Shinnosuke Seki, 2017. "A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tileset synthesis," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 496-529, February.
    10. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55405-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.