IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v566y2021ics0378437120309171.html
   My bibliography  Save this article

A censored Ornstein–Uhlenbeck process for rainfall modeling and derivatives pricing

Author

Listed:
  • Tong, Zhigang
  • Liu, Allen

Abstract

In this paper, we propose to model rainfall based on a continuous time latent process. In this model, both parts of rainfall process — occurrence and intensity, are determined by a censored power-transformed Ornstein–Uhlenbeck (OU) process. When the latent variable takes negative values, the rainfall is censored and takes the value of zero. The new model is tractable and we are able to derive the analytical formulas for rainfall future and future option prices by employing the eigenfunction expansion method. We also carry out an empirical study where the parameters of the model are estimated using the maximum likelihood. The estimation results demonstrate the superior goodness-of-fit of the proposed model. To further enhance the model’s ability to capture the extreme rainfalls, we extend the censored OU model to a censored subordinate OU model where the latent process is modeled by the OU process time changed by Lévy subordinators.

Suggested Citation

  • Tong, Zhigang & Liu, Allen, 2021. "A censored Ornstein–Uhlenbeck process for rainfall modeling and derivatives pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  • Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309171
    DOI: 10.1016/j.physa.2020.125619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309171
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    2. Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.
    3. Gunther Leobacher & Philip Ngare, 2011. "On Modelling and Pricing Rainfall Derivatives with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 71-91.
    4. René Carmona & Pavel Diko, 2005. "Pricing Precipitation Based Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(07), pages 959-988.
    5. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    6. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    7. Zhigang Tong & Allen Liu, 2018. "Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    8. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    9. Zhigang Tong & Allen Liu, 2017. "Analytical pricing formulas for discretely sampled generalized variance swaps under stochastic time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-24, June.
    10. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.
    11. Dongjae Lim & Lingfei Li & Vadim Linetsky, 2012. "Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach," Papers 1206.5046, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Zhigang & Liu, Allen, 2022. "Pricing variance swaps under subordinated Jacobi stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.
    3. repec:hum:wpaper:sfb649dp2017-005 is not listed on IDEAS
    4. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    5. Zhigang Tong & Allen Liu, 2018. "Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    6. Markus Hess, 2016. "Modeling And Pricing Precipitation Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-29, November.
    7. Zhigang Tong & Allen Liu, 2017. "Analytical pricing formulas for discretely sampled generalized variance swaps under stochastic time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-24, June.
    8. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    9. Härdle, Wolfgang Karl & Osipenko, Maria, 2017. "Dynamic valuation of weather derivatives under default risk," SFB 649 Discussion Papers 2017-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Wolfgang Karl Härdle & Maria Osipenko, 2017. "A Dynamic Programming Approach for Pricing Weather Derivatives under Issuer Default Risk," IJFS, MDPI, vol. 5(4), pages 1-18, October.
    11. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    12. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    13. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall derivatives at the CME," SFB 649 Discussion Papers 2013-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.
    15. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    16. Hyungbin Park, 2015. "Sensitivity Analysis of Long-Term Cash Flows," Papers 1511.03744, arXiv.org, revised Sep 2018.
    17. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    18. Weiwei Guo & Lingfei Li, 2019. "Parametric inference for discretely observed subordinate diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 77-110, April.
    19. Nelson Christopher Dzupire & Philip Ngare & Leo Odongo, 2019. "Pricing Basket Weather Derivatives on Rainfall and Temperature Processes," IJFS, MDPI, vol. 7(3), pages 1-14, June.
    20. repec:hum:wpaper:sfb649dp2013-005 is not listed on IDEAS
    21. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    22. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.