IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v1y2013i3p176-191d31293.html
   My bibliography  Save this article

Impact of Climate Change on Heat Wave Risk

Author

Listed:
  • Romain Biard

    (Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, Besançon F-25030, France)

  • Christophette Blanchet-Scalliet

    (Université de Lyon, CNRS UMR 5208, École centrale de Lyon, Institut Camille Jordan, 36 avenue Guy de Collongue, Ecully Cedex F-69134, France)

  • Anne Eyraud-Loisel

    (Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et d'Assurances, 50 Avenue Tony Garnier, Lyon F-69007, France)

  • Stéphane Loisel

    (Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et d'Assurances, 50 Avenue Tony Garnier, Lyon F-69007, France)

Abstract

We study a new risk measure inspired from risk theory with a heat wave risk analysis motivation. We show that this risk measure and its sensitivities can be computed in practice for relevant temperature stochastic processes. This is in particular useful for measuring the potential impact of climate change on heat wave risk. Numerical illustrations are given.

Suggested Citation

  • Romain Biard & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Stéphane Loisel, 2013. "Impact of Climate Change on Heat Wave Risk," Risks, MDPI, vol. 1(3), pages 1-16, December.
  • Handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:176-191:d:31293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/1/3/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/1/3/176/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    2. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes and optimal reserve allocation," Post-Print hal-00397289, HAL.
    3. Stéphane Loisel, 2005. "Differentiation of functionals of risk processes and optimal reserve allocation," Post-Print hal-00397290, HAL.
    4. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes," Post-Print hal-00157739, HAL.
    5. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    6. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    7. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    8. Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
    9. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Warren-Myers & Gideon Aschwanden & Franz Fuerst & Andy Krause, 2018. "Estimating the Potential Risks of Sea Level Rise for Public and Private Property Ownership, Occupation and Management," Risks, MDPI, vol. 6(2), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    2. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    3. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Alexandridis, Antonis K. & Kampouridis, Michael & Cramer, Sam, 2017. "A comparison of wavelet networks and genetic programming in the context of temperature derivatives," International Journal of Forecasting, Elsevier, vol. 33(1), pages 21-47.
    5. Lunina, Veronika, 2016. "Joint Modelling of Power Price, Temperature, and Hydrological Balance with a View towards Scenario Analysis," Working Papers 2016:30, Lund University, Department of Economics.
    6. Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
    7. Zura Kakushadze & Juan Andrés Serur, 2018. "151 Trading Strategies," Springer Books, Springer, number 978-3-030-02792-6, December.
    8. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    9. Zong, Lu & Ender, Manuela, 2013. "Model Comparison for Temperature-based Weather Derivatives in Mainland China," Conference papers 332293, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Asante Gyamerah, Samuel & Ngare, Philip & Ikpe, Dennis, 2018. "A Levy Regime-Switching Temperature Dynamics Model for Weather Derivatives," MPRA Paper 89680, University Library of Munich, Germany, revised 10 Jul 2018.
    11. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    12. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2014. "A comparison of regime-switching temperature modeling approaches for applications in weather derivatives," European Journal of Operational Research, Elsevier, vol. 232(3), pages 549-560.
    13. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    14. Ritter, Matthias & Mußhoff, Oliver & Odening, Martin, 2010. "Meteorological forecasts and the pricing of weather derivatives," SFB 649 Discussion Papers 2010-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    16. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    17. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    18. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    19. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    20. Macci, Claudio, 2008. "Large deviations for the time-integrated negative parts of some processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 75-83, January.

    More about this item

    Keywords

    climate change; risk measure; heat wave risk; temperature modeling; Ornstein–Uhlenbeck process;
    All these keywords.

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting
    • K2 - Law and Economics - - Regulation and Business Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:176-191:d:31293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.