IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.01260.html
   My bibliography  Save this paper

Analytic RFR Option Pricing with Smile and Skew

Author

Listed:
  • Colin Turfus
  • Aurelio Romero-Berm'udez

Abstract

We extend the short rate model of Turfus and Romero-Berm\'udez [2021] to facilitate accurate arbitrage-free analytic pricing of SOFR, SONIA or ESTR caplets, i.e. options on backward-looking compounded rates payments, in a manner consistent with the smile and skew levels observed in the market. These caplet pricing formulae and corresponding LIBOR or term-rate caplet results are translated into effective variance (implied volatility) formulae, which are seen to be of a particularly simple form. They show that the model is essentially equivalent to imposing on a Hull-White model an effective variance which is a quadratic function of the moneyness parameter (rather than a constant) for any given maturity. Results are also illustrated graphically.

Suggested Citation

  • Colin Turfus & Aurelio Romero-Berm'udez, 2023. "Analytic RFR Option Pricing with Smile and Skew," Papers 2301.01260, arXiv.org.
  • Handle: RePEc:arx:papers:2301.01260
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.01260
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Turfus, 2019. "Closed-form Arrow-Debreu pricing for the Hull-White short rate model," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2087-2094, December.
    2. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    3. Elisa Alòs & Rafael De Santiago & Josep Vives, 2015. "Calibration Of Stochastic Volatility Models Via Second-Order Approximation: The Heston Case," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    2. Siow Woon Jeng & Adem Kiliçman, 2021. "SPX Calibration of Option Approximations under Rough Heston Model," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    3. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    4. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    5. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    6. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.
    7. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    8. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    9. Roberto Baviera, 2017. "Back-of-the-envelope swaptions in a very parsimonious multicurve interest rate model," Papers 1712.06466, arXiv.org.
    10. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    13. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    14. Bühler, Wolfgang & Korn, Olaf, 1998. "Hedging langfristiger Lieferverpflichtungen mit kurzfristigen Futures: möglich oder unmöglich?," ZEW Discussion Papers 98-20, ZEW - Leibniz Centre for European Economic Research.
    15. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    16. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    17. Takami, Marcelo Yoshio & Tabak, Benjamin Miranda, 2008. "Interest rate option pricing and volatility forecasting: An application to Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 755-763.
    18. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    19. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    20. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.01260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.