IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v18y2019i04ns0219622019300015.html
   My bibliography  Save this article

Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques

Author

Listed:
  • Yong Shi

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China†Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, P. R. China‡Key Laboratory of Big Data Mining and knowledge Management, Chinese Academy of Sciences, Beijing 100190, P. R. China¶College of Information Science and Technology, University of Nebraska at Omaha, NE 68182, USA)

  • Luyao Zhu

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China†Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, P. R. China‡Key Laboratory of Big Data Mining and knowledge Management, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Wei Li

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China†Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, P. R. China‡Key Laboratory of Big Data Mining and knowledge Management, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Kun Guo

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China†Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, P. R. China‡Key Laboratory of Big Data Mining and knowledge Management, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Yuanchun Zheng

    (#x2020;Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, P. R. China‡Key Laboratory of Big Data Mining and knowledge Management, Chinese Academy of Sciences, Beijing 100190, P. R. China§School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100190, P. R. China)

Abstract

Text is a typical example of unstructured and heterogeneous data in which massive useful knowledge is embedded. Sentiment analysis is used to analyze and predict sentiment polarities of the text. This paper provides a survey and gives comparative analyses of the latest articles and techniques pertaining to lexicon-based, traditional machine learning-based, deep learning-based, and hybrid sentiment analysis approaches. These approaches have their own superiority and get the state-of-the-art results on diverse sentiment analysis tasks. Besides, a brief sentiment analysis example in the tourism domain is displayed, illustrating the entire process of sentiment analysis. Furthermore, we create a large table to compare the pros and cons of different types of approaches, and discuss some insights with respect to research trends. In addition, a lot of important sentiment analysis datasets are summarized in this survey.

Suggested Citation

  • Yong Shi & Luyao Zhu & Wei Li & Kun Guo & Yuanchun Zheng, 2019. "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1243-1287, July.
  • Handle: RePEc:wsi:ijitdm:v:18:y:2019:i:04:n:s0219622019300015
    DOI: 10.1142/S0219622019300015
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622019300015
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622019300015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    2. Kim, Kun & Park, Oun-joung & Yun, Seunghyun & Yun, Haejung, 2017. "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 362-369.
    3. Subarno Pal & Soumadip Ghosh & Amitava Nag, 2018. "Sentiment Analysis in the Light of LSTM Recurrent Neural Networks," International Journal of Synthetic Emotions (IJSE), IGI Global, vol. 9(1), pages 33-39, January.
    4. Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manosso, Franciele Cristina & Domareski Ruiz, Thays Cristina, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 16-27.
    2. Cristina Franciele & Thays Christina Domareski Ruiz, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," Post-Print hal-03373984, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
    2. Shivaji Alaparthi & Manit Mishra, 2021. "BERT: a sentiment analysis odyssey," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 118-126, June.
    3. Wei Li & Luyao Zhu & Kun Guo & Yong Shi & Yuanchun Zheng, 2018. "Build a Tourism-Specific Sentiment Lexicon Via Word2vec," Annals of Data Science, Springer, vol. 5(1), pages 1-7, March.
    4. J. Piet Hausberg & Kirsten Liere-Netheler & Sven Packmohr & Stefanie Pakura & Kristin Vogelsang, 2019. "Research streams on digital transformation from a holistic business perspective: a systematic literature review and citation network analysis," Journal of Business Economics, Springer, vol. 89(8), pages 931-963, December.
    5. Manosso, Franciele Cristina & Domareski Ruiz, Thays Cristina, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 16-27.
    6. Cristina Franciele & Thays Christina Domareski Ruiz, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," Post-Print hal-03373984, HAL.
    7. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    8. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    9. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    10. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    11. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    12. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    13. Yang-Cheng Lu & Yu-Chen Wei, 2013. "The Chinese News Sentiment around Earnings Announcements," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 44-58, October.
    14. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    15. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    16. Ying Zhang & Peggy Swanson, 2010. "Are day traders bias free?—evidence from internet stock message boards," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 34(1), pages 96-112, January.
    17. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    18. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    19. Sudeep Bhatia & Lukasz Walasek & Paul Slovic & Howard Kunreuther, 2021. "The More Who Die, the Less We Care: Evidence from Natural Language Analysis of Online News Articles and Social Media Posts," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 179-203, January.
    20. Domonkos F. Vamossy, 2020. "Investor Emotions and Earnings Announcements," Papers 2006.13934, arXiv.org, revised Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:18:y:2019:i:04:n:s0219622019300015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.