IDEAS home Printed from https://ideas.repec.org/a/igg/jse000/v9y2018i1p33-39.html
   My bibliography  Save this article

Sentiment Analysis in the Light of LSTM Recurrent Neural Networks

Author

Listed:
  • Subarno Pal

    (Academy of Technology, Hooghly, India)

  • Soumadip Ghosh

    (Academy of Technology, Hooghly, India)

  • Amitava Nag

    (Academy of Technology, Hooghly, India)

Abstract

Long short-term memory (LSTM) is a special type of recurrent neural network (RNN) architecture that was designed over simple RNNs for modeling temporal sequences and their long-range dependencies more accurately. In this article, the authors work with different types of LSTM architectures for sentiment analysis of movie reviews. It has been showed that LSTM RNNs are more effective than deep neural networks and conventional RNNs for sentiment analysis. Here, the authors explore different architectures associated with LSTM models to study their relative performance on sentiment analysis. A simple LSTM is first constructed and its performance is studied. On subsequent stages, the LSTM layer is stacked one upon another which shows an increase in accuracy. Later the LSTM layers were made bidirectional to convey data both forward and backward in the network. The authors hereby show that a layered deep LSTM with bidirectional connections has better performance in terms of accuracy compared to the simpler versions of LSTM used here.

Suggested Citation

  • Subarno Pal & Soumadip Ghosh & Amitava Nag, 2018. "Sentiment Analysis in the Light of LSTM Recurrent Neural Networks," International Journal of Synthetic Emotions (IJSE), IGI Global, vol. 9(1), pages 33-39, January.
  • Handle: RePEc:igg:jse000:v:9:y:2018:i:1:p:33-39
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSE.2018010103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjad Iqbal & Rashid Amin & Javed Iqbal & Roobaea Alroobaea & Ahmed Binmahfoudh & Mudassar Hussain, 2022. "Sentiment Analysis of Consumer Reviews Using Deep Learning," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    2. Yong Shi & Luyao Zhu & Wei Li & Kun Guo & Yuanchun Zheng, 2019. "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1243-1287, July.
    3. Shivaji Alaparthi & Manit Mishra, 2021. "BERT: a sentiment analysis odyssey," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 118-126, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jse000:v:9:y:2018:i:1:p:33-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.