IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i10p1741-1761.html
   My bibliography  Save this article

Willow tree algorithms for pricing Guaranteed Minimum Withdrawal Benefits under jump-diffusion and CEV models

Author

Listed:
  • Bing Dong
  • Wei Xu
  • Yue Kuen Kwok

Abstract

This paper presents the willow tree algorithms for pricing variable annuities with Guaranteed Minimum Withdrawal Benefits (GMWB), where the underlying fund dynamics evolve under the Merton jump-diffusion process or constant-elasticity-of-variance (CEV) process. The GMWB rider gives the policyholder the right to make periodic withdrawals from his policy account throughout the life of the contract. The dynamic nature of the withdrawal policy allows the policyholder to decide how much to withdraw on each withdrawal date, or even to surrender the contract. For numerical valuation of the GMWB rider, we use willow tree algorithms that adopt more effective placement of the lattice nodes based on better fitting of the underlying fund price distribution. When compared with other numerical algorithms, like the finite difference method and fast Fourier transform method, the willow tree algorithms compute GMWB prices with significantly less computational time to achieve a similar level of numerical accuracy. The design of our pricing algorithm also includes an efficient search method for the optimal dynamic withdrawal policies. We perform sensitivity analysis of various model parameters on the prices and fair participating fees of the GMWB riders. We also examine the effectiveness of delta hedging when the fund dynamics exhibit various jump levels.

Suggested Citation

  • Bing Dong & Wei Xu & Yue Kuen Kwok, 2019. "Willow tree algorithms for pricing Guaranteed Minimum Withdrawal Benefits under jump-diffusion and CEV models," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1741-1761, October.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:10:p:1741-1761
    DOI: 10.1080/14697688.2019.1583360
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1583360
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1583360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Hang & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Scenario selection with LASSO regression for the valuation of variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 27-43.
    2. Ludovic Gouden`ege & Andrea Molent & Xiao Wei & Antonino Zanette, 2024. "Enhancing Valuation of Variable Annuities in L\'evy Models with Stochastic Interest Rate," Papers 2404.07658, arXiv.org.
    3. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    4. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    5. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    6. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    7. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    8. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    9. Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:10:p:1741-1761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.