IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v52y2023ics1544612322006778.html
   My bibliography  Save this article

Pricing VIX futures: A framework with random level shifts

Author

Listed:
  • Chen, Xiaoyi
  • Feng, JianFen
  • Wang, Tianyi

Abstract

We propose a DRLS framework to price VIX futures by modeling the logVIX series dynamics using the ARFIMA and HAR models that introduce the random level shifts component. Compared with other traditional time series models, our model allows the change of the theoretical mean value of the VIX index by time, which is more reasonable since there are different volatility states under different market environments. Using the Kalman filter, we can derive the explicit formula of the VIX futures price without calculating numerical integration that is different from models without random level shifts. The empirical results show that the DRLS framework performs better in both in-sample estimating and out-of-sample forecasting than directly pricing models without random level shifts and is much simpler.

Suggested Citation

  • Chen, Xiaoyi & Feng, JianFen & Wang, Tianyi, 2023. "Pricing VIX futures: A framework with random level shifts," Finance Research Letters, Elsevier, vol. 52(C).
  • Handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322006778
    DOI: 10.1016/j.frl.2022.103501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322006778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Fangsheng Yin & Yang Bian & Tianyi Wang, 2021. "A short cut: Directly pricing VIX futures with discrete‐time long memory model and asymmetric jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 458-477, April.
    4. Yueh‐Neng Lin, 2007. "Pricing VIX futures: Evidence from integrated physical and risk‐neutral probability measures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(12), pages 1175-1217, December.
    5. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    6. Tianyi Wang & Sicong Cheng & Fangsheng Yin & Mei Yu, 2022. "Directly pricing VIX futures: the role of dynamic volatility and jump intensity," Applied Economics, Taylor & Francis Journals, vol. 54(32), pages 3678-3694, July.
    7. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    8. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    9. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    10. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    11. Jin E. Zhang & Jinghong Shu & Menachem Brenner, 2010. "The new market for volatility trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(9), pages 809-833, September.
    12. Tianyi Wang & Yiwen Shen & Yueting Jiang & Zhuo Huang, 2017. "Pricing the CBOE VIX Futures with the Heston–Nandi GARCH Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(7), pages 641-659, July.
    13. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    14. Song‐Ping Zhu & Guang‐Hua Lian, 2012. "An analytical formula for VIX futures and its applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 166-190, February.
    15. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    16. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangsheng Yin & Yang Bian & Tianyi Wang, 2021. "A short cut: Directly pricing VIX futures with discrete‐time long memory model and asymmetric jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 458-477, April.
    2. Gaoxiu Qiao & Gongyue Jiang, 2023. "VIX futures pricing based on high‐frequency VIX: A hybrid approach combining SVR with parametric models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1238-1260, September.
    3. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    4. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    5. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    6. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    7. Chen Tong & Zhuo Huang & Tianyi Wang, 2022. "Do VIX futures contribute to the valuation of VIX options?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1644-1664, September.
    8. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    9. Qiang Liu & Yuhan Jiao & Shuxin Guo, 2022. "GARCH pricing and hedging of VIX options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 1039-1066, June.
    10. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    11. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    12. Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.
    13. Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
    14. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    15. Xinglin Yang & Peng Wang, 2018. "VIX futures pricing with conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1126-1151, September.
    16. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    18. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    19. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    20. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2020. "Pricing VIX derivatives with infinite‐activity jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 329-354, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322006778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.