Shrinkage Estimation Of Mean-Variance Portfolio
Author
Abstract
Suggested Citation
DOI: 10.1142/S0219024916500035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
- Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Bob Korkie & Harry J. Turtle, 2002. "A Mean-Variance Analysis of Self-Financing Portfolios," Management Science, INFORMS, vol. 48(3), pages 427-443, March.
- Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007.
"Noise sensitivity of portfolio selection under various risk measures,"
Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
- Imre Kondor & Szilard Pafka & Gabor Nagy, 2006. "Noise sensitivity of portfolio selection under various risk measures," Papers physics/0611027, arXiv.org.
- Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Ching-Ping & Chiu, Chia-Yung, 2014. "Adjusting MV-efficient portfolio frontier bias for skewed and non-mesokurtic returns," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 59-83.
- Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2012.
"Sampling error and double shrinkage estimation of minimum variance portfolios,"
Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2011. "Sampling error and double shrinkage estimation of minimum variance portfolios," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bertrand Candelon & Christophe Hurlin & Sessi Tokpavi, 2012. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Post-Print hal-01385835, HAL.
- Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Andrew Paskaramoorthy & Tim Gebbie & Terence van Zyl, 2021. "The efficient frontiers of mean-variance portfolio rules under distribution misspecification," Papers 2106.10491, arXiv.org, revised Jul 2021.
- Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
- Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
- Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
- Frahm, Gabriel & Memmel, Christoph, 2008.
"Dominating estimators for the global minimum variance portfolio,"
Discussion Papers in Econometrics and Statistics
2/08, University of Cologne, Institute of Econometrics and Statistics.
- Frahm, Gabriel & Memmel, Christoph, 2009. "Dominating estimators for the global minimum variance portfolio," Discussion Paper Series 2: Banking and Financial Studies 2009,01, Deutsche Bundesbank.
- Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
- Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
- G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
- Dangl, Thomas & Randl, Otto & Zechner, Josef, 2016. "Risk control in asset management: Motives and concepts," CFS Working Paper Series 546, Center for Financial Studies (CFS).
- Moorman, Theodore, 2014. "An empirical investigation of methods to reduce transaction costs," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 230-246.
- Long Zhao & Deepayan Chakrabarti & Kumar Muthuraman, 2019. "Portfolio Construction by Mitigating Error Amplification: The Bounded-Noise Portfolio," Operations Research, INFORMS, vol. 67(4), pages 965-983, July.
- Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
- Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
- Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
More about this item
Keywords
Investment analysis; matrix inequalities; mean-variance portfolio; shrinkage covariance matrix;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:01:n:s0219024916500035. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.