IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/14525.html
   My bibliography  Save this paper

Impossible Frontiers

Author

Listed:
  • Thomas J. Brennan
  • Andrew W. Lo

Abstract

A key result of the Capital Asset Pricing Model (CAPM) is that the market portfolio---the portfolio of all assets in which each asset's weight is proportional to its total market capitalization---lies on the mean-variance efficient frontier, the set of portfolios having mean-variance characteristics that cannot be improved upon. Therefore, the CAPM cannot be consistent with efficient frontiers for which every frontier portfolio has at least one negative weight or short position. We call such efficient frontiers "impossible", and derive conditions on asset-return means, variances, and covariances that yield impossible frontiers. With the exception of the two-asset case, we show that impossible frontiers are difficult to avoid. Moreover, as the number of assets n grows, we prove that the probability that a generically chosen frontier is impossible tends to one at a geometric rate. In fact, for one natural class of distributions, nearly one-eighth of all assets on a frontier is expected to have negative weights for *every* portfolio on the frontier. We also show that the expected minimum amount of shortselling across frontier portfolios grows linearly with n, and even when shortsales are constrained to some finite level, an impossible frontier remains impossible. Using daily and monthly U.S. stock returns, we document the impossibility of efficient frontiers in the data.

Suggested Citation

  • Thomas J. Brennan & Andrew W. Lo, 2008. "Impossible Frontiers," NBER Working Papers 14525, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:14525
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w14525.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Dybvig, Philip H, 1984. "Short Sales Restrictions and Kinks on the Mean Variance Frontier," Journal of Finance, American Finance Association, vol. 39(1), pages 239-244, March.
    5. Best, Michael J. & Grauer, Robert R., 1990. "The efficient set mathematics when mean-variance problems are subject to general linear constraints," Journal of Economics and Business, Elsevier, vol. 42(2), pages 105-120, May.
    6. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    7. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    8. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    9. Detemple, Jerome & Murthy, Shashidhar, 1997. "Equilibrium Asset Prices and No-Arbitrage with Portfolio Constraints," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1133-1174.
    10. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    11. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    12. Roll, Richard, 1977. "A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory," Journal of Financial Economics, Elsevier, vol. 4(2), pages 129-176, March.
    13. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    14. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    15. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    16. Heaton, John & Lucas, Deborah J, 1996. "Evaluating the Effects of Incomplete Markets on Risk Sharing and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 443-487, June.
    17. Tu, Jun & Zhou, Guofu, 2004. "Data-generating process uncertainty: What difference does it make in portfolio decisions?," Journal of Financial Economics, Elsevier, vol. 72(2), pages 385-421, May.
    18. Brito, Ney O, 1978. "Portfolio Selection in an Economy with Marketability and Short Sales Restrictions," Journal of Finance, American Finance Association, vol. 33(2), pages 589-601, May.
    19. Best, Michael J. & Grauer, Robert R., 1992. "Positively Weighted Minimum-Variance Portfolios and the Structure of Asset Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(4), pages 513-537, December.
    20. Zhenyu Wang, 2005. "A Shrinkage Approach to Model Uncertainty and Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 673-705.
    21. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    22. Sun, Wan Gui & Wang, Chun Feng, 2006. "The mean-variance investment problem in a constrained financial market," Journal of Mathematical Economics, Elsevier, vol. 42(7-8), pages 885-895, November.
    23. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    24. Best, Michael J & Grauer, Robert R, 1985. "Capital Asset Pricing Compatible with Observed Market Value Weights," Journal of Finance, American Finance Association, vol. 40(1), pages 85-103, March.
    25. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    26. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    27. Green, Richard C, 1986. "Positively Weighted Portfolios on the Minimum-Variance Frontier," Journal of Finance, American Finance Association, vol. 41(5), pages 1051-1068, December.
    28. Rudd, Andrew, 1977. "A note on qualitative results for investment proportions," Journal of Financial Economics, Elsevier, vol. 5(2), pages 259-263, November.
    29. Jarrow, Robert A, 1980. "Heterogeneous Expectations, Restrictions on Short Sales, and Equilibrium Asset Prices," Journal of Finance, American Finance Association, vol. 35(5), pages 1105-1113, December.
    30. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    31. Duffie, Darrell & Garleanu, Nicolae & Pedersen, Lasse Heje, 2002. "Securities lending, shorting, and pricing," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 307-339.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    34. Michael J. Best & Robert R. Grauer, 1991. "Sensitivity Analysis for Mean-Variance Portfolio Problems," Management Science, INFORMS, vol. 37(8), pages 980-989, August.
    35. Roll, Richard & Ross, Stephen A., 1977. "Comments on qualitative results for investment proportions," Journal of Financial Economics, Elsevier, vol. 5(2), pages 265-268, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levy, Moshe & Levy, Haim, 2015. "Keeping up with the Joneses and optimal diversification," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 29-38.
    2. Diacogiannis, George & Ioannidis, Christos, 2022. "Linear beta pricing with efficient/inefficient benchmarks and short-selling restrictions," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Chiaki Hara & Toshiki Honda, 2016. "Mutual Fund Theorem for Ambiguity-Averse Investors and the Optimality of the Market Portfolio," KIER Working Papers 943, Kyoto University, Institute of Economic Research.
    4. Wenzelburger, Jan, 2020. "Mean-variance analysis and the Modified Market Portfolio," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    5. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    6. Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
    7. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2016. "Portfolio selection with conservative short-selling," Finance Research Letters, Elsevier, vol. 18(C), pages 363-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    2. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    3. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    4. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    5. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    6. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    7. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    8. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    9. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    10. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    11. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    12. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    13. Levy, Moshe, 2007. "Conditions for a CAPM equilibrium with positive prices," Journal of Economic Theory, Elsevier, vol. 137(1), pages 404-415, November.
    14. Diacogiannis, George & Ioannidis, Christos, 2022. "Linear beta pricing with efficient/inefficient benchmarks and short-selling restrictions," International Review of Financial Analysis, Elsevier, vol. 81(C).
    15. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    16. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    17. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    18. Levy, Moshe & Ritov, Yaacov, 2001. "Portfolio Optimization with Many Assets: The Importance of Short-Selling," University of California at Los Angeles, Anderson Graduate School of Management qt41x4t67m, Anderson Graduate School of Management, UCLA.
    19. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    20. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.